Malaria transmission relies on the production of gametes following ingestion by a mosquito. Here, we show that Ca2+-dependent protein kinase 4 controls three processes essential to progress from a single haploid microgametocyte to the release of eight flagellated microgametes in Plasmodium berghei. A myristoylated isoform is activated by Ca2+ to initiate a first genome replication within twenty seconds of activation. This role is mediated by a protein of the SAPS-domain family involved in S-phase entry. At the same time, CDPK4 is required for the assembly of the subsequent mitotic spindle and to phosphorylate a microtubule-associated protein important for mitotic spindle formation. Finally, a non-myristoylated isoform is essential to complete cytokinesis by activating motility of the male flagellum. This role has been linked to phosphorylation of an uncharacterised flagellar protein. Altogether, this study reveals how a kinase integrates and transduces multiple signals to control key cell-cycle transitions during Plasmodium gametogenesis.DOI: http://dx.doi.org/10.7554/eLife.26524.001
In malaria parasites, evolution of parasitism has been linked to functional optimisation. Despite this optimisation, most members of a calcium-dependent protein kinase (CDPK) family show genetic redundancy during erythrocytic proliferation. To identify relationships between phospho-signalling pathways, we here screen 294 genetic interactions among protein kinases in Plasmodium berghei. This reveals a synthetic negative interaction between a hypomorphic allele of the protein kinase G (PKG) and CDPK4 to control erythrocyte invasion which is conserved in P. falciparum. CDPK4 becomes critical when PKG-dependent calcium signals are attenuated to phosphorylate proteins important for the stability of the inner membrane complex, which serves as an anchor for the acto-myosin motor required for motility and invasion. Finally, we show that multiple kinases functionally complement CDPK4 during erythrocytic proliferation and transmission to the mosquito. This study reveals how CDPKs are wired within a stage-transcending signalling network to control motility and host cell invasion in malaria parasites.
We use a mathematical model fit to clinical trial data to estimate the efficacy of multiple-dose ivermectin regimens against onchocerciasis. We found marked macrofilaricidal activity of regimens used in routine mass drug administration, calling for revised projections on elimination timeframes.
<b><i>Introduction:</i></b> The sympathetic nervous system can modulate arteriolar tone through release of adenosine triphosphate and norepinephrine, which bind to purinergic and adrenergic receptors (ARs), respectively. The expression pattern of these receptors, as well as the composition of neurotransmitters released from perivascular nerves (PVNs), can vary both in organ systems within and across species, such as mice and rats. <b><i>Objective:</i></b> This study explores the function of α<sub>1A</sub> subtypes in mouse and rat third-order mesenteric arteries and investigates PVN-mediated vasoconstriction to identify which neurotransmitters are released from sympathetic PVNs. <b><i>Methods:</i></b> Third-order mesenteric arteries from male C57BL/6J mice and Wistar rats were isolated and mounted on a wire myograph for functional assessment. Arteries were exposed to phenylephrine (PE) and then incubated with either α<sub>1A</sub> antagonist RS100329 (RS) or α<sub>1D</sub> antagonist BMY7378, before reexposure to PE. Electrical field stimulation was performed by passing current through platinum electrodes positioned adjacent to arteries in the absence and presence of a nonspecific alpha AR blocker phentolamine and/or P2X<sub>1</sub>-specific purinergic receptor blocker NF449. <b><i>Results:</i></b> Inhibition of α<sub>1</sub> ARs by RS revealed that PE-induced vasoconstriction is primarily mediated through α<sub>1A</sub> and that the contribution of the α<sub>1A</sub> AR is greater in rats than in mice. In the mouse model, sympathetic nerve-mediated vasoconstriction is mediated by both ARs and purinergic receptors, whereas in rats, vasoconstriction appeared to only be mediated by ARs and a nonpurinergic neurotransmitter. Further, neither model demonstrated that α<sub>1D</sub> ARs play a significant role in PE-mediated vasoconstriction. <b><i>Conclusions:</i></b> The mesenteric arteries of male C57BL/6J mice and Wistar rats have subtle differences in the signaling mechanisms used to mediate vasoconstriction. As signaling pathways in humans under physiological and pathophysiological conditions become better defined, the current study may inform animal model selection for preclinical studies.
It is thought that sympathetic nerve activation stimulates arterial constriction predominately through the release of three neurotransmitters: norepinephrine (NE), adenosine triphosphate (ATP) and neuropeptide Y (NPY). The aim of the current study was to examine the composition of neurotransmitter released in response to sympathetic nerve stimulation in mesenteric arteries of two commonly used wild‐type animal models. Isolated mesenteric arteries from male C57BL/6J mice and Wistar rats were mounted in a Danish Myotechnology 2‐Channel Wire Myograph System and isometric force measurements were recorded. Electrical field stimulation (EFS) was used to stimulate sympathetic perivascular nerves (PVNs) to release neurotransmitters in the presence and absence of the adrenergic receptor blocker phentolamine and/or purinergic receptor blocker NF449. Phentolamine alone blocked a significant proportion of the contractile response evoked by EFS in both mice and rats, suggesting that NE is the main sympathetic neurotransmitter in both species. Treatment with NF449 alone blocked a small proportion of the contractile response evoked by EFS in mice but did not have a significant effect in rat, suggesting that ATP may play a more important role in mice. The application of both phentolamine and NF449 nearly completely blocked the contractile response to EFS in mouse mesenteric arteries; however, in rat, a proportion of the contractile response, roughly equivalent to the response obtained in the presence of phentolamine alone, was still observed. These data suggest that the neurotransmitter composition is different between mice and rats, in particular mouse mesenteric sympathetic PVNs release NE and ATP while rat mesenteric sympathetic PVNs release NE and another non‐purinergic neurotransmitter(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.