Nasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC. Methods: Radiation-responsive and radiation-resistant NPC cells were used as the model system in vitro and in vivo. Metabolomics approach was used to illustrate the global metabolic changes. 13C isotopomer tracing experiment and Seahorse XF analysis were undertaken to determine the activity of fatty acid oxidation (FAO). qRT-PCR was performed to evaluate the expression of essential FAO genes including CPT1A. NPC tumor tissue microarray was used to investigate the prognostic role of CPT1A. Either RNA interference or pharmacological blockade by Etomoxir were used to inhibit CPT1A. Radiation resistance was evaluated by colony formation assay. Mitochondrial membrane potential, apoptosis and neutral lipid content were measured by flow cytometry analysis using JC-1, Annexin V and LipidTOX Red probe respectively. Molecular markers of mitochondrial apoptosis were detected by western blot. Xenografts were treated with Etomoxir, radiation, or a combination of Etomoxir and radiation. Mitochondrial apoptosis and lipid droplets content of tumor tissues were detected by cleaved caspase 9 and Oil Red O staining respectively. Liquid chromatography coupled with tandem mass spectrometry approach was used to identify CPT1A-binding proteins. The interaction of CPT1A and Rab14 were detected by immunoprecipitation, immunofluorescence and in situ proximity ligation analysis. Fragment docking and direct coupling combined computational protein-protein interaction prediction method were used to predict the binding interface. Fatty acid trafficking was measured by pulse-chase assay using BODIPY C16 and MitoTracker Red probe. Results: FAO was active in radiation-resistant NPC cells, and the rate-limiting enzyme of FAO, carnitine palmitoyl transferase 1 A (CPT1A), was consistently up-regulated in these cells. The protein level of CPT1A was significantly associated with poor overall survival of NPC patients following radiotherapy. Inhibition of CPT1A re-sensitized NPC cells to radiation therapy by activating mitochondrial apoptosis both in vitro and in vivo. In addition, we identified Rab14 as a novel CPT1A binding protein. The CPT1A-Rab14 interaction facilitated fatty acid trafficking from lipid droplets to mitochondria, which decreased radiation-induced lipid accumulation and maximized ATP production. Knockdown of Rab14 attenuated CPT1A-mediated fatty acid trafficking and radiation resistance. Conclusion: An active FAO is a vital signature of NPC radiation resistance. Targeting CPT1A could be a beneficial regimen to improve the therapeutic effects of radiotherapy in NPC patients. Importantly, the CPT1A-Rab14 interaction plays roles in CPT1A-mediated radiation...
Although medical school education showed little effect on attitudes, students with more individual experiences such as planning to continue clinical psychiatric training, believing psychiatry should be more valued, and having friends with mental illness had less stigmatized attitudes than others.
Gliomas are the most common primary brain tumors. This meta-analysis aimed to systematically evaluate the relationship between CD147 expression in tissues and the clinicopathological features of patients with glioma. We searched PubMed (1966-2016), EMBASE (1980-2016), Cochrane Library (1996-2016), Web of Science (1945-2016), China National Knowledge Infrastructure (1982-2016), and Wan Fang databases (1988-2016). Quality assessment of the literature was performed using the Newcastle-Ottawa Scale, with Revman 5.3 and Stata 14.0 for analysis. In total, 1806 glioma patients from 19 studies were included, and patients with CD147 overexpression had poorer overall survival [hazard ratio (HR) = 2.211, P < 0.0001], a higher risk of recurrence (HR = 2.20, P = 0.0025), and a lower 5-year survival rate [odds ratio (OR) 0.12; 95% CI 0.08-0.19; P < 0.00001]. We observed significant differences in CD147 expression when comparing glioma tissues versus non-cancerous brain tissues (OR 20.42; 95% CI 13.94-29.91; P < 0.00001), tumor grades III-IV versus grades I-II (OR 5.88, 95% CI 4.15-8.34; P < 0.00001), and large versus small tumors (OR 1.58, 95% CI 1.04-2.40; P = 0.03). We also observed a significant correlation with matrix metalloproteinase (MMP) 2 (OR 39.11, 95% CI 11.47-133.34; P < 0.00001) and MMP9 (OR 13.35, 95% CI 4.67-38.18; P < 0.00001). CD147 expression did not differ based on patient's age (young vs. old, P = 0.89) or gender (female vs. male, P = 0.57). CD147 expression may be a potential prognostic biomarker for poorer overall and relapse-free survival, and may affect the 5-year survival rate in glioma patients. CD147 expression is also closely correlated with poor clinical characteristics in glioma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.