Brain-inspired intelligent systems demand diverse neuromorphic devices beyond simple functionalities. Merging biomimetic sensing with weight-updating capabilities in artificial synaptic devices represents one of the key research focuses. Here, we report a multiresponsive synapse device that integrates synaptic and optical-sensing functions. The device adopts vertically stacked graphene/h-BN/WSe2 heterostructures, including an ultrahigh-mobility readout layer, a weight-control layer, and a dual-stimuli-responsive layer. The unique structure endows synapse devices with excellent synaptic plasticity, short response time (3 μs), and excellent optical responsivity (105 A/W). To demonstrate the application in neuromorphic computing, handwritten digit recognition was simulated based on an unsupervised spiking neural network (SNN) with a precision of 90.89%, well comparable with the state-of-the-art results. Furthermore, multiterminal neuromorphic devices are demonstrated to mimic dendritic integration and photoswitching logic. Different from other synaptic devices, the research work validates multifunctional integration in synaptic devices, supporting the potential fusion of sensing and self-learning in neuromorphic networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.