It has been well established that core binding factor a-1/osteoblast-specific factor-2 (cbfa1/osf2) is a key regulator of osteoblast differentiation and function, however, it is not known whether it can induce bone formation in vitro and in vivo. To investigate the effect of cbfa1/osf2 on bone formation, we used a recombinant adenoviral vector carrying the mouse cbfa1/osf2 gene to transduce primary cultured bone marrow stromal cells (MSCs) of BALB/c mice. We found that Ad-cbfa1/osf2-transduced MSCs produced cbfa1/osf2 protein and differentiated into osteoblast-like cells. The transduced MSCs had increased alkaline phosphatase activity, increased expression of osteocalcin, osteopontin and bone sialoprotein, and increased matrix mineralization in vitro. To observe the induction of bone formation in vivo, MSCs transduced with Ad-cbfa1/osf2 were transplanted into a 5 mm diameter critical-sized skull defect in BALB/c mice, with type I collagen as scaffolding material. Healing of the defect in treatment and control groups was examined grossly and histologically at four weeks. Skull defects transplanted with Ad-cbfa1/osf2-transduced MSCs had an average of 85% osseous closure at four weeks. Control groups in which the defects were not treated (group 1), treated with collagen only (group 2), or treated with collagen and nontransduced MSCs (group 3) showed little or no osseous healing. These studies indicate that cbfa1/osf2 can induce osteoblast differentiation and bone formation both in vitro and in vivo, suggesting that MSCs transduced with the cbfa1/osf2 gene may be useful in treating bone defects.
Background/Aims: The hydroxylation of fatty acids at the C-2 position is the first step of fatty acid α-oxidation and generates sphingolipids containing 2-hydroxy fatty acyl moieties. Fatty acid 2-hydroxylation is catalyzed by Fatty acid 2-hydroxylase (FA2H) enzyme. However, the precise roles of FA2H and fatty acid 2-hydroxylation in whole cell homeostasis still remain unclear. Methods: Here we utilize Caenorhabditis elegans as the model and systemically investigate the physiological functions of FATH-1/C25A1.5, the highly conserved worm homolog for mammalian FA2H enzyme. Immunostaining, dye-staining and translational fusion reporters were used to visualize FATH-1 protein and a variety of subcellular structures. The “click chemistry” method was employed to label 2-OH fatty acid in vivo. Global and tissue-specific RNAi knockdown experiments were performed to inactivate FATH-1 function. Lipid analysis of the fath-1 deficient mutants was achieved by mass spectrometry. Results: C. elegans FATH-1 is expressed at most developmental stages and in most tissues. Loss of fath-1 expression results in severe growth retardation and shortened lifespan. FATH-1 function is crucially required in the intestine but not the epidermis with stereospecificity. The “click chemistry” labeling technique showed that the FATH-1 metabolites are mainly enriched in membrane structures preferable to the apical side of the intestinal cells. At the subcellular level, we found that loss of fath-1 expression inhibits lipid droplets formation, as well as selectively disrupts peroxisomes and apical endosomes. Lipid analysis of the fath-1 deficient animals revealed a significant reduction in the content of heptadecenoic acid, while other major FAs remain unaffected. Feeding of exogenous heptadecenoic acid (C17: 1), but not oleic acid (C18: 1), rescues the global and subcellular defects of fath-1 knockdown worms. Conclusion: Our study revealed that FATH-1 and its catalytic products are highly specific in the context of chirality, C-chain length, spatial distribution, as well as the types of cellular organelles they affect. Such an unexpected degree of specificity for the synthesis and functions of hydroxylated FAs helps to regulate protein transport and fat metabolism, therefore maintaining the cellular homeostasis of the intestinal cells. These findings may help our understanding of FA2H functions across species, and offer potential therapeutical targets for treating FA2H-related diseases.
Matrix metallopeptidase 14 plays an important role in regulating invasion of HeLa cells. Matrix metallopeptidase 14 knockdown contributes to attenuating the malignant phenotype of cervical cancer cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.