Summary
To protect assets and resources from being hacked, intrusion detection systems are widely implemented in organizations around the world. However, false alarms are one challenging issue for such systems, which would significantly degrade the effectiveness of detection and greatly increase the burden of analysis. To solve this problem, building an intelligent false alarm filter using machine learning classifiers is considered as one promising solution, where an appropriate algorithm can be selected in an adaptive way in order to maintain the filtration accuracy. By means of cloud computing, the task of adaptive algorithm selection can be offloaded to the cloud, whereas it could cause communication delay and increase additional burden. In this work, motivated by the advent of edge computing, we propose a framework to improve the intelligent false alarm reduction for DIDS based on edge computing devices. Our framework can provide energy efficiency as the data can be processed at the edge for shorter response time. The evaluation results demonstrate that our framework can help reduce the workload for the central server and the delay as compared to the similar studies.
Summary
The classification of network traffic, which involves classifying and identifying the type of network traffic, is the most fundamental step to network service improvement and modern network management. Classic machine learning and deep learning methods have widely adopted in the field of network traffic classification. However, there are two major challenges in practice. One is the user privacy concern in cross‐domain traffic data sharing for the purpose of training a global classification model, and the other is the difficulty to obtain large amount of labeled data for training. In this paper, we propose a novel approach using federated semi‐supervised learning for network traffic classification, in which the federated server and clients from different domains work together to train a global classification model. Among them, unlabeled data are used on the client side, and labeled data are used on the server side. The experimental results derived from a public dataset show that the accuracy of the proposed approach can reach 97.81%, and the accuracy gap between the federated learning approach and the centralized training method is minimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.