Terahertz (THz)-driven acceleration has recently emerged as a new route for delivering ultrashort bright electron beams efficiently, reliably, and in a compact setup. Many THz-driven acceleration related working schemes and key technologies have been successfully demonstrated and are continuously being improved to new limits. However, the achieved acceleration gradient and energy gain remain low, and the potential physics and technical challenges in the high field and high energy regime are still under-explored. Here we report a record energy gain of 170 keV in a single-stage configuration, and demonstrate the first cascaded acceleration of a relativistic beam with a 204 keV energy gain in a two-stages setup. Whole-bunch acceleration is accomplished with an average accelerating gradient of 85 MV/m and a peak THz electric field of 1.1 GV/m. This proof-of-principle result is a crucial advance in THz-driven acceleration with a major impact on future electron sources and related scientific discoveries.
We demonstrate a highly efficient method for the generation of a high-field terahertz (THz) pulse train via optical rectification (OR) in congruent lithium niobate (LN) crystals driven by temporally shaped laser pulses. A narrowband THz pulse has been successfully achieved with sub-percent level conversion efficiency and multi MV/cm peak field at 0.26 THz. For the single-cycle THz generation, we achieved a THz pulse with 373-μJ energy in a LN crystal excited by a 100-mJ laser pulse at room temperature. The conversion efficiency is further improved to 0.77 % pumped by a 20-mJ laser pulse with a smaller pump beam size (6 mm in horizontal and 15 mm in vertical). This method holds great potential for generating mJ-level narrow-band THz pulse trains, which may have a major impact in mJ-scale applications like terahertz-based accelerators and light sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.