Immunotherapies targeting the PD-1/PD-L1 axis are now a mainstay in the clinical management of multiple cancer types, however, many tumors still fail to respond. CCL2 is highly expressed in various cancer types and has been shown to be associated with poor prognosis. Inhibition or blockade of the CCL2/CCR2 signaling axis has thus been an area of interest for cancer therapy. Here we show across multiple murine tumor and metastasis models that CCR2 antagonism in combination with anti-PD-1 therapy leads to sensitization and enhanced tumor response over anti-PD-1 monotherapy. We show that enhanced treatment response correlates with enhanced CD8+ T cell recruitment and activation and a concomitant decrease in CD4+ regulatory T cell. These results provide strong preclinical rationale for further clinical exploration of combining CCR2 antagonism with PD-1/PD-L1-directed immunotherapies across multiple tumor types especially given the availability of small molecule CCR2 inhibitors and antibodies.
The two, nearly identical, isoforms of human progesterone receptors (PR), PR-B and -A, share activation functions (AF) 1 and 2, yet they possess markedly different transcriptional profiles, with PR-B being much stronger transactivators. Their differences map to a unique AF3 in the B-upstream segment (BUS), at the far N terminus of PR-B, which is missing in PR-A. Combined mutation of two LXXLL motifs plus tryptophan 140 in BUS, to yield PR-BdL140, completely destroys PR-B activity, because strong AF3 synergism with downstream AF1 and AF2 is eliminated. This synergism involves cooperative interactions among receptor multimers bound at tandem hormone response elements and is transferable to AFs of other nuclear receptors. Other PR-B functions-N-/C-terminal interactions, steroid receptor coactivator-1 coactivation, ligand-dependent down-regulation-also require an intact BUS. All three are autonomous in PR-A, and map to N-terminal regions common to both PR. This suggests that the N-terminal structure adopted by the two PR is different, and that for PR-B, this is controlled by BUS. Indeed, gene expression profiling of breast cancer cells stably expressing PR-B, PR-BdL140, or PR-A shows that mutation of AF3 destroys PR-B-dependent gene transcription without converting PR-B into PR-A. In sum, AF3 in BUS plays a critical modulatory role in PR-B, and in doing so, defines a mechanism for PR-B function that is fundamentally distinct from that of PR-A.
cAMP is required for differentiation of human endometrial stromal cells (HESCs) into decidual cells in response to progesterone, although the underlying mechanism is not well understood. We now demonstrate that cAMP signaling attenuates ligand-dependent sumoylation of the progesterone receptor (PR) in HESCs. In fact, decidualization is associated with global hyposumoylation and redistribution of small ubiquitin-like modifier (SUMO)-1 conjugates into distinct nuclear foci. This altered pattern of global sumoylation was not attributable to impaired maturation of SUMO-1 precursor or altered expression of E1 (SAE1͞SEA2) or E2 (Ubc9) enzymes but coincided with profound changes in the expression of E3 ligases and SUMO-specific proteases. Downregulation of several members of the protein inhibitors of activated STAT (PIAS) family upon decidualization pointed toward a role of these E3 ligases in PR sumoylation. We demonstrate that PIAS1 interacts with the PR and serves as its E3 SUMO ligase upon activation of the receptor. Furthermore, we show that silencing of PIAS1 not only enhances PR-dependent transcription but also induces expression of prolactin, a decidual marker gene, in progestin-treated HESCs without the need of simultaneous activation of the cAMP pathway. Our findings demonstrate how dynamic changes in the SUMO pathway mediated by cAMP signaling determine the endometrial response to progesterone.endometrium ͉ protein inhibitor of activated STAT 1 ͉ decidualization ͉ progesterone receptor
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.