Terpyridine-functionalized graphene oxides were prepared for self-assembly into 3D architectures with various metal ions (e.g., Fe, Ru). The resulting electrode materials showed significantly improved electroactivities for efficient energy conversion and storage. They showed promise for application in the oxygen reduction reaction (ORR), photocurrent generation, and supercapacitance.
Molecularly engineered weakly conjugated hybrid porphyrin systems are presented as efficient sensitizers for solid‐state dye‐sensitized solar cells. By incorporating the quinolizino acridine and triazatruxene based unit as the secondary light‐harvester as well as electron‐donating group at the meso‐position of the porphyrin core, the power conversion efficiencies of 4.5% and 5.1% are demonstrated in the solid‐state devices containing 2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spiro bifluorene as hole transporting material. The photovoltaic performance of the triazatruxene donor based porphyrin sensitizer is better than that of the previously published porphyrin molecules exhibiting strongly conjugated push–pull structure. The effect of molecular structure on the optical and electrochemical properties, the dynamics of charge extraction, as well as the photovoltaic performance are systematically investigated, which offers a new design strategy for further refinement of porphyrin molecules.
Terpyridine‐functionalized graphene oxides were prepared for self‐assembly into 3D architectures with various metal ions (e.g., Fe, Ru). The resulting electrode materials showed significantly improved electroactivities for efficient energy conversion and storage. They showed promise for application in the oxygen reduction reaction (ORR), photocurrent generation, and supercapacitance.
A series of metallodendrimers 9–11, as well as their corresponding ligands, were designed and synthesized. These materials integrate perylene as a functional core with termini; both chromophores are known for their photovoltaic properties. The products were fully characterized by a combination of 1H NMR and 13C NMR spectroscopy, COSY, and MS. Their photophysical properties revealed a broad absorption spectrum with enhanced molar absorption coefficients corresponding to the increase in the number of units, which is indicative of their potential as candidates for light harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.