Partial substitution of Ce in Nd-Fe-B magnets is a feasible way to cope with the crisis of Nd and Dy in Nd-Fe-B production and reduce the cost of Nd-Fe-B magnets. In the present paper, the Nd-Ce-Fe-B films with high performance have been successfully fabricated by using an ultra-high vacuum (UHV) magnetron sputtering system. High magnetic performance with a ceorcivity of 13.3 kOe, a remanence of 11.4 kGs and a maximum energy product of 29.4 GMOe is obtained with the Ce substitution for more than 50 wt.% Nd without Dy addition. The high coercivity and (BH)max achieved in this work are much larger than those of previously reported Nd-Ce-Fe-B magnets with the same Ce concentration. The phase structure, microstructure and coercivity mechanism are analyzed. The coercivity mechanism is determined to be mainly dominated by nucleation. Based on the microstructure observation and coercivity mechanism analysis, the fine and well separated grains, smooth grain surface, small and less inhomogeneities should be responsible for the high coercivity. Our results encourage the further improvement of magnetic properties in Ce magnets including the bulk material with high Ce concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.