The fatigue behaviors of metals are different under different in-service environment and loading conditions. This study was devoted to investigating the combined effects of high and low cycle fatigue loads on the performance of the low alloy steel Q345. Three kinds of experiments were carried out, including the pure high cycle fatigue (HCF) tests, the pure low cycle fatigue (LCF) tests, and the combined high and low cycle fatigue (HLCF) tests. The prediction formulae were proposed for the combined high and low cycle fatigue failure. Scanning electron microscopy (SEM) and stereo microscope were used to analyze the microstructure and fracture morphology due to different fatigue loads. Case study on the combined high and low cycle fatigue damage of a steel arch bridge was carried out based on the FE method and the proposed formula. The results show that the LCF life decreases evidently due to the prior HCF damages. The HLCF fracture surface is relatively flat near the crack initiation side, and rugged at the other half part. The fatigue damages at the bridge joints increase significantly with consideration of the pre-fatigue damages caused by traffic load. In the 100th anniversary of service, the fatigue damage index without considering the HCF pre-damage is only about 50% of the coupled damage value.
Mechanical properties, including the fatigue behavior of metals, are usually determined from damage-free specimens, but it is not well known how these properties change with respect to prior damages; hence, the present work aims to understand the remaining mechanical properties of low carbon alloy steel Q345q with pre-damages. Low-cycle fatigue tests on the damage free specimens, tensile tests on the low-cycle fatigue damaged specimens, and fatigue tests on the plastic deformed specimens were carried out, respectively. The low-cycle fatigue life prediction formula was proposed. The influences of different kinds of pre-damages on the residual mechanical properties were analyzed. Results show that the stable hysteretic loops in the low-cycle fatigue tests are well-stacked. The material illustrates Masing behavior, and it has a good energy dissipation capacity. The ductility of the low-cycle fatigue-damaged materials decreases significantly in comparison with the undamaged ones. The low-cycle fatigue lives of Q345q steel are almost unaffected, so long as the pre-applied tensile strain is lower than 10%.
In order to study the failure mode and debonding behavior of the interface between BFRP (basalt fiber reinforced polymer) sheet and structural steel under mixed-mode loading conditions, eighteen specimens with different initial angles were tested in this study. The specimens were designed with different initial angles to ensure that the interface performed under mixed-mode loading conditions. The relations between the bond strengths, failure modes, and initial angles were investigated. A new evaluation method to predict the interfacial bond strength under shear-peeling loading mode was proposed. The test results show that specimens with a smaller initial angle are more likely to exhibit a shear debonding failure at the interface between the steel plate and adhesive. In contrast, specimens with a larger initial angle are more likely to exhibit peeling of the interface. The ultimate tensile strength of the specimen is higher with a smaller initial angle. The results predicted by the proposed method are in good agreement with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.