This paper describes a sintering technique for ceramics and ceramic-based composites, using water as a transient solvent to effect densification (i.e. sintering) at temperatures between room temperature and 200 °C. To emphasize the incredible reduction in sintering temperature relative to conventional thermal sintering this new approach is named the "Cold Sintering Process" (CSP). Basically CSP uses a transient aqueous environment to effect densification by a mediated dissolution-precipitation process. CSP of NaCl, alkali molybdates and V2 O5 with small concentrations of water are described in detail, but the process is extended and demonstrated for a diverse range of chemistries (oxides, carbonates, bromides, fluorides, chlorides and phosphates), multiple crystal structures, and multimaterial applications. Furthermore, the properties of selected CSP samples are demonstrated to be essentially equivalent as samples made by conventional thermal sintering.
Research on sintering of dense ceramic materials has been very active in the past decades and still keeps gaining in popularity. Although a number of new techniques have been developed, the sintering process is still performed at high temperatures. Very recently we established a novel protocol, the “Cold Sintering Process (CSP)”, to achieve dense ceramic solids at extraordinarily low temperatures of <300°C. A wide variety of chemistries and composites were successfully densified using this technique. In this article, a comprehensive CSP tutorial will be delivered by employing three classic ferroelectric materials (KH2PO4, NaNO2, and BaTiO3) as examples. Together with detailed experimental demonstrations, fundamental mechanisms, as well as the underlying physics from a thermodynamics perspective, are collaboratively outlined. Such an impactful technique opens up a new way for cost‐effective and energy‐saving ceramic processing. We hope that this article will provide a promising route to guide future studies on ultralow temperature ceramic sintering or ceramic materials related integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.