rcccDNA was intrinsically stable in vivo, enabling long-term persistence in the context of chronic hepatitis, and viral persistence, in turn, may promote progression of chronic liver disease; our study also presented a surrogate model of HBV cccDNA persistence in mice that could advance our understanding of the pathogenesis of chronic hepatitis B. (Hepatology 2018;67:56-70).
An antigen capture enzyme-linked immunosorbent assay (AC-ELISA) was established based on two monoclonal antibodies (mAbs) for the quantification of equine infectious anemia virus (EIAV). Two p26-specific monoclonal antibodies were developed in mice. The mAb 9H8 was coated in microtiter plates as the capture antibody; the other mAb, 1G11, was coupled to horseradish peroxidase (HRP) and used as the detection antibody. The limit of detection for the EIAV p26 protein was 0.98 ng/ml, and the linearity range was 3.9-62.5 ng/ml. The sensitivity of p26 AC-ELISA for the detection of the virus (EIAV infectious clone, FDDVcmv3-8) was the same as that for the purified p26 protein. No cross-reaction with other equine viruses was observed by this method. The intra- and inter-assay coefficients of variation were below 8.3 and 10.3 % for testing p26 and FDDVcmv3-8, respectively. The AC-ELISA was also compared to Western blotting (WB) and reverse transcriptase (RT) assays, validating the sensitivity, accuracy, and reliability of this method. Both the AC-ELISA and RT assay showed good agreement, with a correlation coefficient of R (2) =0.9946. Sample analysis showed that this AC-ELISA is a useful tool for quantifying EIAV p26 in cell lysates and culture medium.
The equine infectious anemia virus (EIAV) capsid protein (p26) is one of the major immunogenic proteins during EIAV infection and is widely used for the detection of EIAV antibodies in horses. However, few reports have described the use of EIAV-specific monoclonal antibodies (MAbs) in etiological and immunological detection. Previously, we developed an antigen capture enzyme-linked immunosorbent assay (AC-ELISA) for the quantification of the EIAV p26 protein level. However, the epitopes recognized by the MAbs were not identified, and the utilization of the MAbs needs to be evaluated. In this study, we characterized two monoclonal antibodies (9H8 and 1G11 MAbs) against EIAV p26. Two B-cell epitopes are located in amino acid residues, NLDKIAEE (HE) and KNAMRHLRPEDTLEEKMYAC (GE) for the 9H8 and 1G11 MAbs, respectively. The 1G11 epitope (GE) varied among viruses isolated worldwide but can be recognized by anti-EIAV sera from different regions, including China, the USA, and Argentina. Meanwhile, 1G11 MAb could react with the mutants of almost all the EIAV strains. Furthermore, we found that the histidine at position 204 (H204), leucine at position 205 (L205), and aspartic acid at position 209 (D209) of EIAV p26 individually played pivotal roles in binding with the 1G11 MAb. Our results revealed that the GE peptide might be a common B-cell binding epitope of EIAV antibodies. This is also the first report to identify a broad-spectrum monoclonal antibody (1G11) against p26 of EIAV. These findings may provide a useful basis for the development of new diagnostic assays for EIAV.
People who inject drugs (PWIDs) are primarily the high-risk population for HCV infection. This study aims to determine the optimal cut-off values for predicting HCV infection status based on the Signal-to-Cutoff (S/CO) ratio. In this study, a total of 719 PWIDs’ samples were collected, and performed for screening test by ELISA assay, and followed by RIBA assay and NAT assay to detect HCV antibody and HCV RNA levels, respectively. The findings revealed that the prevalence of HCV infection among PWIDs was 54.66% (393/719), and the false-positive rate of HCV antibody detection by ELISA assay among PWIDs was only 3.85% (16/416). In addition, when the optimal cut-off value for S/CO ratio was 2.0, the sensitivity and specificity of HCV antibody were 100.00% and 93.55%, respectively. And when the optimal cut-off value for S/CO ratio was 21.36, the sensitivity and specificity of HCV RNA positive were 89.90% and 72.73%, respectively. In conclusion, the status of HCV infection can be predicted based on the S/CO ratios of the ELISA assay, which can improve diagnosis and facilitate timely treatment to effectively prevent the spread of HCV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.