This study proposes a coordinated control strategy to solve the coupling problem between the multi-axle steering system and the active suspension system of emergency rescue vehicles. Firstly, an eleven-degree-of-freedom coupling model of an emergency rescue vehicle is established. Secondly, a dual sliding mode (DSM) controller is designed for the multi-axle steering system and a dual linear quadratic regulator (DLQR) controller is designed for the active suspension system. Finally, the coordinated control strategy is designed, and the weight values are selected using the fuzzy algorithm. Results show that compared with the individual control, the root mean square (RMS) value of the body roll angle, roll angle acceleration, and yaw angle acceleration with coordinated control are reduced by 16.89%, 29.08%, and 27.75%, respectively. The proposed coordinated control strategy effectively improves the handling stability and ride comfort of the vehicle.
The suspension system needs both an active mode and passive mode when the emergency rescue vehicle is running on a complex road. Therefore, an active–passive composite suspension actuator (APCSA) is designed in this paper. Firstly, combined with computational fluid dynamics theory and dynamic mesh technology, the complete fluid domain of the original passive suspension actuator (PSA) is simulated. Secondly, in accordance with the simulation results and in consideration of the working conditions of the active suspension of the emergency rescue vehicle, the APCSA is designed, and its flow field characteristics are studied. Finally, test results show that the maximum recovery damping force/compression damping force of the APCSA is 2428.98 N/−1470.29 N, which is 53.5%/50.4% lower than that of the original PSA. Hence, the dynamic response capability of the actuator is effectively improved, which lays a foundation for improving the ride comfort and handling stability of emergency rescue vehicles on complex roads.
This study proposes the active suspension control strategy of heavy rescue vehicles based on multi-sensor information fusion to address the problem of poor ride comfort and stability of heavy rescue vehicles on unstructured pavement. Firstly, an attitude fusion algorithm with acceleration compensation is designed. According to the driving speed, the appropriate cut-off frequency of acceleration filter is selected, and the extended Kalman filter is designed to complete the optimal estimation of position and attitude information. Secondly, the vehicle nine degree of freedom model is established, and the inverse matrix of attitude control is solved to obtain the suspension actuator output. Lastly, an active suspension control strategy based on multi-sensor information fusion is designed. The body attitude information after the information fusion is used for the control of active suspension system to realize the real-time adjustment of body attitude. Test results show that the root mean square values of vertical displacement, pitch angle, and roll angle under active suspension are reduced by 37.01%, 26.96%, and 38.90%, respectively, compared with those under in passive suspension. This reduction improves the ride comfort and stability of the heavy rescue vehicles on unstructured pavement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.