tert-Butylperoxy radicals generated by TBHP and Ru(PPh3)3Cl2 or other catalysts adds to C60 and C70 to form stable multiadducts, C60(O)(OOtBu)4 and C70(OOtBu)10. The four tert-butylperoxy groups in the C60 mixed peroxide are located around a pentagon, and the epoxy O occupies the remaining 6,6-bond connected to the same pentagon. The C70 decaadduct shows an unprecedented C2 symmetry with the 10 tert-butylperoxy groups added around the central part of C70 by consecutive 1,4-addition. The compounds are fully characterized by spectroscopic data.
The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.
A WO3/CeO2-ZrO2 catalyst system was discovered for selective catalytic reduction of NOx with NH3; the catalyst (10 wt% WO3 loading) showed nearly 100% NOx conversion in a temperature range of 200-500 degrees C, at a space velocity of 90 000 h(-1) in a simulated diesel exhaust containing 550 ppm NOx (NO : NO2 feed ratio at 1.0), 10 vol% H2O and 10 vol% CO2; the catalyst also exhibited high temperature stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.