For diagnosis of coronavirus disease 2019 (COVID-19), a SARS-CoV-2 virus-specific reverse transcriptase polymerase chain reaction (RT-PCR) test is routinely used. However, this test can take up to 2 d to complete, serial testing may be required to rule out the possibility of false negative results and there is currently a shortage of RT-PCR test kits, underscoring the urgent need for alternative methods for rapid and accurate diagnosis of patients with COVID-19. Chest computed tomography (CT) is a valuable component in the evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone may have limited negative predictive value for ruling out SARS-CoV-2 infection, as some patients may have normal radiological findings at early stages of the disease. In this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings with clinical symptoms, exposure history and laboratory testing to rapidly diagnose patients who are positive for COVID-19. Among a total of 905 patients tested by real-time RT-PCR assay and next-generation sequencing RT-PCR, 419 (46.3%) tested positive for SARS-CoV-2. In a test set of 279 patients, the AI system achieved an area under the curve of 0.92 and had equal sensitivity as compared to a senior thoracic radiologist. The AI system also improved the detection of patients who were positive for COVID-19 via RT-PCR who presented with normal CT scans, correctly identifying 17 of 25 (68%) patients, whereas radiologists classified all of these patients as COVID-19 negative. When CT scans and associated clinical history are available, the proposed AI system can help to rapidly diagnose COVID-19 patients. The COVID-19 pandemic has rapidly propagated due to widespread person-to-person transmission 1-6. Laboratory confirmation of SARS-CoV-2 is performed with a virus-specific RT-PCR, but the test can take up to 2 d to complete. Chest CT is a valuable component of evaluation and diagnosis in symptomatic patients with
Background Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has been associated with neurological and neuropsychiatric illness in many individuals. We sought to further our understanding of the relationship between brain tropism, neuro-inflammation, and host immune response in acute COVID-19 cases. Methods Three brain regions (dorsolateral prefrontal cortex, medulla oblongata, and choroid plexus) from 5 patients with severe COVID-19 and 4 controls were examined. The presence of the virus was assessed by western blot against viral spike protein, as well as viral transcriptome analysis covering > 99% of SARS-CoV-2 genome and all potential serotypes. Droplet-based single-nucleus RNA sequencing (snRNA-seq) was performed in the same samples to examine the impact of COVID-19 on transcription in individual cells of the brain. Results Quantification of viral spike S1 protein and viral transcripts did not detect SARS-CoV-2 in the postmortem brain tissue. However, analysis of 68,557 single-nucleus transcriptomes from three distinct regions of the brain identified an increased proportion of stromal cells, monocytes, and macrophages in the choroid plexus of COVID-19 patients. Furthermore, differential gene expression, pseudo-temporal trajectory, and gene regulatory network analyses revealed transcriptional changes in the cortical microglia associated with a range of biological processes, including cellular activation, mobility, and phagocytosis. Conclusions Despite the absence of detectable SARS-CoV-2 in the brain at the time of death, the findings suggest significant and persistent neuroinflammation in patients with acute COVID-19.
Deriving disease subtypes from electronic health records (EHRs) can guide next-generation personalized medicine. However, challenges in summarizing and representing patient data prevent widespread practice of scalable EHR-based stratification analysis. Here we present an unsupervised framework based on deep learning to process heterogeneous EHRs and derive patient representations that can efficiently and effectively enable patient stratification at scale. We considered EHRs of 1,608,741 patients from a diverse hospital cohort comprising a total of 57,464 clinical concepts. We introduce a representation learning model based on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE) to transform patient trajectories into lowdimensional latent vectors. We evaluated these representations as broadly enabling patient stratification by applying hierarchical clustering to different multi-disease and disease-specific patient cohorts. ConvAE significantly outperformed several baselines in a clustering task to identify patients with different complex conditions, with 2.61 entropy and 0.31 purity average scores. When applied to stratify patients within a certain condition, ConvAE led to various clinically relevant subtypes for different disorders, including type 2 diabetes, Parkinson's disease, and Alzheimer's disease, largely related to comorbidities, disease progression, and symptom severity. With these results, we demonstrate that ConvAE can generate patient representations that lead to clinically meaningful insights. This scalable framework can help better understand varying etiologies in heterogeneous sub-populations and unlock patterns for EHR-based research in the realm of personalized medicine.
MotivationRecent advances in mass cytometry allow simultaneous measurements of up to 50 markers at single-cell resolution. However, the high dimensionality of mass cytometry data introduces computational challenges for automated data analysis and hinders translation of new biological understanding into clinical applications. Previous studies have applied machine learning to facilitate processing of mass cytometry data. However, manual inspection is still inevitable and becoming the barrier to reliable large-scale analysis.ResultsWe present a new algorithm called Automated Cell-type Discovery and Classification (ACDC) that fully automates the classification of canonical cell populations and highlights novel cell types in mass cytometry data. Evaluations on real-world data show ACDC provides accurate and reliable estimations compared to manual gating results. Additionally, ACDC automatically classifies previously ambiguous cell types to facilitate discovery. Our findings suggest that ACDC substantially improves both reliability and interpretability of results obtained from high-dimensional mass cytometry profiling data.Availability and ImplementationA Python package (Python 3) and analysis scripts for reproducing the results are availability on https://bitbucket.org/dudleylab/acdc.Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.