The synthesis and characterization of fluorinated carbon nanotubes have been carried out under an inert gas containing fluorine. All of the samples have been characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance ((13)C and (19)F ss-NMR) and transmission electron microscopy (TEM) techniques. The comparison of the effects of various experimental parameters on the structure of fluorinated materials allows the disclosure of the fluorination mechanism. It is shown that fluorine was intercalated into the outer part of the carbon nanotubes initially where graphene layers were coaxial within a distance of 0.60 nm. In contrast, the inner part of the carbon nanotubes was not intercalated. The electrochemical performance such as discharge capacity as a cathode for a primary lithium battery has also been investigated. The samples with a F/C ratio of 0.75 exhibited the best performance, namely high energy and power densities. The highest specific energy density and specific power density were 1147 Wh kg(-1) and 8998 W kg(-1), respectively, at a current density of 4 A g(-1).
In the recent years, three-dimensional (3D) high-temperature superconductors at ultrahigh pressure have been reported, typical examples are the polyhydrides H3S, LaH10, and YH9, etc. To find high-temperature superconductors in two-dimensional...
Autophagy is an evolutionarily conserved lysosome-based degradation process. Atg5 plays a very important role in autophagosome formation. Here we show that Atg5 is required for biogenesis of late endosomes and lysosomes in an autophagy-independent manner. In Atg5 cells, but not in other essential autophagy genes defecting cells, recycling and retrieval of late endosomal components from hybrid organelles are impaired, causing persistent hybrid organelles and defective formation of late endosomes and lysosomes. Defective retrieval of late endosomal components from hybrid organelles resulting from impaired recruitment of a component of V1-ATPase to acidic organelles blocks the pH-dependent retrieval of late endosomal components from hybrid organelles. Lowering the intracellular pH restores late endosome/lysosome biogenesis in Atg5 cells.Our data demonstrate an unexpected role of Atg5 and shed new light on late endosome and lysosome biogenesis.
endosome/lysosome biogenesis, atg5, autophagyCitation:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.