Image recognition based on deep learning generally demands a huge sample size for training, for which the image labeling becomes inevitably laborious and time-consuming. In the case of evaluating the pavement quality condition, many pavement distress patching images would need manual screening and labeling, meanwhile the subjectivity of the labeling personnel would greatly affect the accuracy of image labeling. In this study, in order for an accurate and efficient recognition of the pavement patching images, an interactive labeling method is proposed based on the U-Net convolutional neural network, using active learning combined with reverse and correction labeling. According to the calculation results in this paper, the sample size required by the interactive labeling is about half of the traditional labeling method for the same recognition precision. Meanwhile, the accuracy of interactive labeling method based on the mean intersection over union (mean_IOU) index is 6% higher than that of the traditional method using the same sample size and training epochs. In addition, the accuracy analysis of the noise and boundary of the prediction results shows that this method eliminates 92% of the noise in the predictions (the proportion of noise is reduced from 13.85% to 1.06%), and the image definition is improved by 14.1% in terms of the boundary gray area ratio. The interactive labeling is considered as a significantly valuable approach, as it reduces the sample size in each epoch of active learning, greatly alleviates the demand for manpower, and improves learning efficiency and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.