The effect of a pH-shifting and ultrasound combined process on the functional properties and structure of pea protein isolate (PPI) was investigated. PPI dispersions were adjusted to pH 2, 4, 10, or 12, treated by power ultrasound for 5min, and incubated for 1h before the sample pH was brought back to neutral. After treatment, water solubility, protein aggregate size, solution turbidity, surface hydrophobicity (Ho), free sulfhydryl content (SH), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the soluble PPI were determined. pH-shifting at pH 12 and ultrasound combined treatment (pH12-US) significantly improved protein properties, while property modification of the samples treated under acidic conditions was less pronounced. The pH12-US treated PPI had a solubility seven times higher than the control, reaching an average particle size of 45.2nm. In addition, the pH12-US treated PPI significantly improved Ho due to disulfide bonds disruption, and produced more protein sub-units than other treatments. The soluble PPI obtained through this process may be a promising emulsifier for the enrichment of fat-soluble nutrients in foods.
Acoustic energy as a form of physical energy has drawn the interests of both industry and scientific communities for its potential use as a food processing and preservation tool. Currently, most such applications deal with ultrasonic waves with relatively high intensities and acoustic power densities and are performed mostly in liquids. In this review, we briefly discuss the fundamentals of power ultrasound. We then summarize the physical and chemical effects of power ultrasound treatments based on the actions of acoustic cavitation and by looking into several ultrasound-assisted unit operations. Finally, we examine the biological effects of ultrasonication by focusing on its interactions with the miniature biological systems present in foods, i.e., microorganisms and food enzymes, as well as with selected macrobiological components.
The combination of a spouted bed with microwave heating to improve heating uniformity was evaluated. Experiments were performed on a laboratory system in which evaporated diced apples of about 24% moisture were dried to about 5% at 70ЊC air temperature using four levels of microwave power density (0 to 6.1 W/g). With the combination method, temperature uniformity in diced apples was greatly improved as compared to that with a stationary bed during microwave drying. Products had less discoloration and higher rehydration rates as compared to conventional hot air drying or spouted bed (SB) drying. Drying time could be reduced by Ͼ80% compared with SB drying without microwave heating.
This study was conducted to investigate the effect of free chlorine concentrations in wash water on Escherichia coli O157:H7 reduction, survival, and transference during washing of fresh-cut lettuce. The effectiveness of rewashing for inactivation of E. coli O157:H7 on newly cross-contaminated produce previously washed with solutions containing an insufficient amount of chlorine also was assessed. Results indicate that solutions containing a minimum of 0.5 mg/liter free chlorine were effective for inactivating E. coli O157:H7 in suspension to below the detection level. However, the presence of 1 mg/liter free chlorine in the wash solution before washing was insufficient to prevent E. coli O157:H7 survival and transfer during washing because the introduction of cut lettuce to the wash system quickly depleted the free chlorine. Although no E. coli O157:H7 was detected in the wash solution containing 5 mg/liter free chlorine before washing a mix of inoculated and uninoculated lettuce, low numbers of E. coli O157:H7 cells were detected on uninoculated lettuce in four of the seven experimental trials. When the prewash free chlorine concentration was increased to 10 mg/liter or greater, no E. coli O157:H7 transfer was detected. Furthermore, although rewashing newly cross-contaminated lettuce in 50 mg/liter free chlorine for 30 s significantly reduced (P = 0.002) the E. coli O157:H7 populations, it failed to eliminate E. coli O157:H7 on lettuce. This finding suggests that rewashing is not an effective way to correct for process failure, and maintaining a sufficient free chlorine concentration in the wash solution is critical for preventing pathogen cross-contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.