Salmonella enterica subspecies I (ssp 1) is the leading cause of hospitalizations and deaths due to known bacterial foodborne pathogens in the United States and is frequently implicated in foodborne disease outbreaks associated with spices and nuts. However, the underlying mechanisms of this association have not been fully elucidated. In this study, we evaluated the influence of storage temperature (4 or 25 • C), relative humidity (20 or 60%), and food surface characteristics on the attachment and survival of five individual strains representing S. enterica ssp 1 serovars Typhimurium, Montevideo, Braenderup, Mbandaka, and Enteritidis on raw in-shell black peppercorns, almonds, and hazelnuts. We observed a direct correlation between the food surface roughness and S. enterica ssp 1 attachment, and detected significant inter-strain difference in survival on the shell surface under various storage conditions. A combination of low relative humidity (20%) and ambient storage temperature (25 • C) resulted in the most significant reduction of S. enterica on shell surfaces (p < 0.05). To identify genes potentially associated with S. enterica attachment and survival on shell surfaces, we inoculated a library of 120,000 random transposon insertion mutants of an S. Enteritidis strain on almond shells, and screened for mutant survival after 1, 3, 7, and 14 days of storage at 20% relative humidity and 25 • C. Mutants in 155 S. Enteritidis genes which are involved in carbohydrate metabolic pathways, aerobic and anaerobic respiration, inner membrane transport, and glutamine synthesis displayed significant selection on almond shells (p < 0.05). Findings of this study suggest that various food attributes, environmental factors, and an unexpectedly complex metabolic and regulatory network in S. enterica ssp 1 collectively contribute to the bacterial attachment and survival on low moisture shell surface, providing new data for the future development of knowledge-based intervention strategies.
In this paper, we studied the morphological, histological and photosynthetic characteristics of the stably inherited sunflower petal-sepal mutant, and it was obtained by the space radiation-induced mutagenesis. Afterwards, we got following results: 1) The morphological characteristics represented that the inflorescence of petal-sepal mutant maintained the appearance and structure of capitulum, whereas no explicit tubular flower or ligulate flower was differentiated.2) The histological characteristics revealed that the petal-sepal mutant only completed the inflorescence development and the differentiation of sepal primordia and inflorescence primordia, without entering the differentiation stage of tubular flower primordia, ligulate flower primordia, stamen primordia or pistil primordia. 3) The photosynthetic characteristics showed that the photosynthetic rate, transpiration and stomatal conductance of petal-sepal mutant were relatively weaker than the control plants. In the end, we concluded that the petal-sepal mutant of sunflower had only inflorescence differentiation, while several mutant genes were caused by radiation-induced mutation, which entered an infinitely recurrent development process rather than the floral differentiation stage. We also observed a few chloroplast structures in the paraffin section, combined with the results of photosynthetic characteristics of petal-sepal mutant, and then we believed that the inflorescence of petal-sepal mutant was involved in photosynthesis to accumulate energy for plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.