An increasing body of neuroimaging and electrophysiological studies of the brain suggest that the insular cortex (IC) integrates multimodal salient information ranging from sensation to cognitive-affective events to create conscious interoception. Especially with regard to pain experience, the IC has been supposed to participate in both sensory-discriminative and affective-motivational aspects of pain. In this review, we discuss the latest data proposing that subregions of the IC are involved in isolated pain networks: the posterior sensory circuit and the anterior emotional network. Due to abundant connections with other brain areas, the IC is likely to serve as an interface where cross-modal shaping of pain occurs. In chronic pain, however, this mode of emotional awareness and the modulation of pain are disrupted. We highlight some of the molecular mechanisms underlying the changes of the pain modulation system that contribute to the transition from acute to chronic pain in the IC.
For polymer solar cells (PSCs), the mixture of polymer donors and small‐molecule acceptors (SMAs) is fine‐tuned to realize a favorable kinetically trapped morphology and thus a commercially viable device efficiency. However, the thermodynamic relaxation of the mixed domains within the blend raises concerns related to the long‐term operational stability of the devices, especially in the record‐holding Y‐series SMAs. Here, a new class of dimeric Y6‐based SMAs tethered with differential flexible spacers is reported to regulate their aggregation and relaxation behavior. In their polymer blends with PM6, it is found that they favor an improved structural order relative to that of Y6 counterpart. Most importantly, the tethered SMAs show large glass transition temperatures to suppress the thermodynamic relaxation in mixed domains. For the high‐performing dimeric blend, an unprecedented open circuit voltage of 0.87 V is realized with a conversion efficiency of 17.85%, while those of regular Y6‐base devices only reach 0.84 V and 16.93%, respectively. Most importantly, the dimer‐based device possesses substantially reduced burn‐in efficiency loss, retaining more than 80% of the initial efficiency after operating at the maximum power point under continuous illumination for 700 h. The tethering approach provides a new direction to develop PSCs with high efficiency and excellent operating stability.
The acceptor-donor-acceptor (A–D–A) or A–DA’D–A structured small molecule acceptors (SMAs) have triggered substantial progress for polymer solar cells (PSCs). However, the high−cost of the SMAs impedes the commercial viability of such renewable energy, as their synthesis via the classical pyridine-catalyzed Knoevenagel condensation usually suffers from low reaction efficiency and tedious purifying work-up. Herein, we developed a simple and cheap boron trifluoride etherate-catalyzed Knoevenagel condensation for addressing this challenge, and found that the coupling of the aldehyde-terminated D unit and the A-end groups could be quantitatively finished in the presence of acetic anhydride within 15 minutes at room temperature. Compared with the conventional method, the high reaction efficiency of our method is related to the germinal diacetate pathway that is thermodynamically favorable to give the final products. For those high performing SMAs (such as ITIC-4F and Y6), the cost could be reduced by 50% compared with conventional preparation. In addition to the application in PSCs, our synthetic approach provides a facile and low-cost access to a wide range of D–A organic semiconductors for emerging technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.