We analyze a fixed-point algorithm for reinforcement learning (RL) of optimal portfolio mean-variance preferences in the setting of multivariate generalized autoregressive conditionalheteroskedasticity (MGARCH) with a small penalty on trading. A numerical solution is obtained using a neural network (NN) architecture within a recursive RL loop. A fixed-point theorem proves that NN approximation error has a big-oh bound that we can reduce by increasing the number of NN parameters. The functional form of the trading penalty has a parameter ϵ > 0 that controls the magnitude of transaction costs. When ϵ is small, we can implement an NN algorithm based on the expansion of the solution in powers of ϵ. This expansion has a base term equal to a myopic solution with an explicit form, and a firstorder correction term that we compute in the RL loop. Our expansion-based algorithm is stable, allows for fast computation, and outputs a solution that shows positive testing performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.