An advanced forming process involving hot forming and cold-die quenching, also known as HFQ®, has been employed to form AA6082 tailor welded blanks (TWBs). The HFQ® process combines both forming and heat treatment in a single operation, whereby upon heating the TWB, it is stamped and held between cold tools to quench the component to room temperature. The material therefore undergoes temperature, strain rate or strain path changes during the operation. In this paper, a finite element model (FEM) was developed to investigate the formability and deformation characteristics of the TWBs under HFQ® conditions. Experimental results, i.e. strain distribution, were used to compare and validate the simulation results. A good agreement between the experiment and simulation has been achieved. The developed temperature, strain rate and strain path dependent forming limit prediction model has been implemented into FE simulation to capture the complicated failure features of the HFQ® formed TWBs. It is found from both experiment and simulation that the forming speed has important effects on the occurrence of failure position, where the failure mode for the 1.5-2 mm TWBs may change from localised circumferential necking to parallel weld necking.HFQ® is a registered trademark of Impression Technologies Ltd.
Forming limit diagrams (FLDs) of AA6082 at warm/hot stamping conditions were determined by using a specially designed test rig. The tests were carried out at various temperatures from 300 to 450°C and forming speeds ranging from 75 to 400 mm/s. The strain was visualized and measured using ARGUS software provided by GOM. The results clearly show that the formability of AA6082-T6 sheet metal, in terms of the limit major strain, increased by 38.9 % when the forming temperature was increased from 300°C to 450°C at a speed of 250 mm/s, and increased by 42.4 % when the forming speed was decreased from 400 to 75 mm/s at a temperature of 400°C. It was verified that hot stamping is a promising technology for manufacturing complex-shaped components.
The multi-eye vision image acquisition method is used to allow multiple cameras to collect panorama information around the car and send it to multiple MCUs (Microcontroller Units) to process the images at the same time, and then extract valid information. The main MCU comprehensively processes these valid signals to get the most urgent control signal, then drives the voice broadcast module to assist the driver in driving the vehicle. At the same time, the auxiliary MCU is set to monitor the operation of the main MCU and perform various control actions instead of the main MCU when it fails. This not only solves the contradiction between the high complexity of image processing and the requirement for fast signal processing and transmission speed, but also makes the car have good visual processing capabilities, control flexibility and safety.
Bipolar plate is the key component of proton exchange membrane (PEM) fuel cell and represents a significant part of the overall cost and the total weight in a fuel cell stack. Many research have been done on the manufacturing methods of bipolar plate, among which stamping is very popular. With the increasing of the channel number and complexity, its dimensional error caused by sprinkback will change a lot, even under the same forming process. And the risk of crack is also different. These all impact the quality of bipolar plate. In order to predict deformation of channels and the plate’s quality, the displacement along X-axis, the strain and stress state, and the displacement along Z-axis are measured. The results show that 1) the risk of crack increases with the increasing of channel number; 2) the springbacks increase with the increasing of channel number; 3) the most dangerous point locates on the right internal fillet of the plate’s last section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.