Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.
Tungsten ditelluride (WTe 2 ) has attracted significant attention due to its interesting electronic properties, such as the unsaturated magnetoresistance and superconductivity. Recently, it has been proposed to be a new type of Weyl semimetal, which is distinguished from other transition metal dichalcogenides (TMDs) from a topological prospective. Here, we study the structure of WTe 2 under pressure with a crystal structure prediction and ab initio calculations combined with high pressure synchrotron X-ray diffraction and Raman spectroscopy measurements. We find that the ambient orthorhombic structure (Td) transforms into a monoclinic structure (1T') at around 4-5 GPa. As the transition pressure is very close to the critical point in recent high-pressure electrical transport measurements, the emergence of superconductivity in WTe 2 under pressure is attributed to the Td-1T' structure phase transition, which associates with a sliding mechanism of the TMD layers and results in a shorter Te-Te interlayer distance compared to the intralayer ones. These results highlight the critical role of the interlayer stacking and chalcogen interactions on the electronic and superconducting properties of multilayered TMDs under hydrostatic strain environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.