The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.
9α-Hydroxy-4-androstene-3,17-dione (9-OHAD) is a valuable steroid pharmaceutical intermediate which can be produced by the conversion of soybean phytosterols in mycobacteria. However, the unsatisfactory productivity and conversion efficiency of engineered mycobacterial strains hinder their industrial applications. Here, a sigma factor D (sigD) was investigated due to its dramatic downregulation during the conversion of phytosterols to 9-OHAD. It was determined as a negative regulator in the metabolism of phytosterols, and the deletion of sigD in a 9-OHAD-producing strain significantly enhanced the titer of 9-OHAD by 18.9%. Furthermore, a high yielding strain was constructed by the combined modifications of sigD and choM2, a key gene in the phytosterol metabolism pathway. After the modifications, the productivity of 9-OHAD reached 0.071 g/L/h (10.27 g/L from 20 g/L phytosterol), which was 22.5% higher than the original productivity of 0.058 g/L/h (8.37 g/L from 20 g/L phytosterol) in the industrial resting cell biotransformation system.
BackgroundThe strategy of modifying the sterol catabolism pathway in mycobacteria has been adopted to produce steroidal pharmaceutical intermediates, such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), which is used to synthesize various steroids in the industry. However, the productivity is not desirable due to some inherent problems, including the unsatisfactory uptake rate and the low metabolic efficiency of sterols. The compact cell envelope of mycobacteria is a main barrier for the uptake of sterols. In this study, a combined strategy of improving the cell envelope permeability as well as the intracellular sterol metabolism efficiency was investigated to increase the productivity of 4-HBC.Results MmpL3, encoding a transmembrane transporter of trehalose monomycolate, is an important gene influencing the assembly of mycobacterial cell envelope. The disruption of mmpL3 in Mycobacterium neoaurum ATCC 25795 significantly enhanced the cell permeability by 23.4% and the consumption capacity of sterols by 15.6%. Therefore, the inactivation of mmpL3 was performed in a 4-HBC-producing strain derived from the wild type M. neoaurum and the 4-HBC production in the engineered strain was increased by 24.7%. Subsequently, to enhance the metabolic efficiency of sterols, four key genes, choM1, choM2, cyp125, and fadA5, involved in the sterol conversion pathway were individually overexpressed in the engineered mmpL3-deficient strain. The production of 4-HBC displayed the increases of 18.5, 8.9, 14.5, and 12.1%, respectively. Then, the more efficient genes (choM1, cyp125, and fadA5) were co-overexpressed in the engineered mmpL3-deficient strain, and the productivity of 4-HBC was ultimately increased by 20.3% (0.0633 g/L/h, 7.59 g/L 4-HBC from 20 g/L phytosterol) compared with its original productivity (0.0526 g/L/h, 6.31 g/L 4-HBC from 20 g/L phytosterol) in an industrial resting cell bio-transformation system.ConclusionsIncreasing cell permeability combined with the co-overexpression of the key genes (cyp125, choM1, and fadA5) involved in the conversion pathway of sterol to 4-HBC was effective to enhance the productivity of 4-HBC. The strategy might also be useful for the conversion of sterol to other steroidal intermediates by mycobacteria.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-017-0705-x) contains supplementary material, which is available to authorized users.
Background: The bioconversion of phytosterols into high value-added steroidal intermediates, including the 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), is the cornerstone in steroid pharmaceutical industry. However, the low transportation efficiency of hydrophobic substrates into mycobacterial cells severely limits the transformation. In this study, a robust and stable modification of the cell wall in M. neoaurum strain strikingly enhanced the cell permeability for the high production of steroids. Results: The deletion of the nonessential kasB, encoding a β-ketoacyl-acyl carrier protein synthase, led to a disturbed proportion of mycolic acids (MAs), which is one of the most important components in the cell wall of Mycobacterium neoaurum ATCC 25795. The determination of cell permeability displayed about two times improvement in the kasBdeficient strain than that of the wild type M. neoaurum. Thus, the deficiency of kasB in the 9-OHAD-producing strain resulted in a significant increase of 137.7% in the yield of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). Ultimately, the 9-OHAD productivity in an industrial used resting cell system was reached 0.1135 g/L/h (10.9 g/L 9-OHAD from 20 g/L phytosterol) and the conversion time was shortened by 33%. In addition, a similar self-enhancement effect (34.5%) was realized in the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain. Conclusions: The modification of kasB resulted in a meaningful change in the cell wall mycolic acids. Deletion of the kasB gene remarkably improved the cell permeability, leading to a self-enhancement of the steroidal intermediate conversion. The results showed a high efficiency and feasibility of this construction strategy.
3-Ketosteroid 9α-hydroxylase (Ksh) consists of a terminal oxygenase (KshA) and a ferredoxin reductase and is indispensable in the cleavage of steroid nucleus in microorganisms. The activities of Kshs are crucial factors in determining the yield and distribution of products in the biotechnological transformation of sterols in industrial applications. In this study, two KshA homologues, KshA1 and KshA2, were characterized and further engineered in a sterol-digesting strain, ATCC 25795 to construct androstenone-producing strains. Thereinto, is a member of the gene cluster encoding sterol catabolism enzymes, and its transcription exhibited a 4.7-fold increase under cholesterol induction. Furthermore, null mutation of led to the stable accumulation of androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD). We determined to be a redundant form of Through a combined modification of , , and other key genes involved in the metabolism of sterols, we constructed a high-yield ADD-producing strain that could produce 9.36 g l ADD from the transformation of 20 g l phytosterols in 168 h. Moreover, we improved a previously established 9α-hydroxy-AD-producing strain via the overexpression of a mutant KshA1 that had enhanced Ksh activity. Genetic engineering allowed the new strain to produce 11.7 g l 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) from the transformation of 20.0 g l phytosterol in 120 h. Steroidal drugs are widely used for anti-inflammation, anti-tumor, endocrine regulation, fertility management, among other uses. The two main starting materials for the industrial synthesis of steroid drugs are phytosterol and diosgenin. The phytosterol processing is carried out by microbial transformation, which is thought to be superior to the diosgenin processing by chemical conversions, given its simple and environmentally friendly process. However, diosgenin has long been used as the primary starting material instead of phytosterol. This is in response to challenges in developing efficient microbial strains for industrial phytosterol transformation, which stems from complex metabolic processes that feature many currently unclear details. In this study, we identified two oxygenase homologues of 3-ketosteroid-9α-hydroxylase, KshA1 and KshA2, in and demonstrated their crucial role in determining the yield and variety of products from phytosterol transformation. This work has practical value in developing industrial strains for phytosterol biotransformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.