By the formation of a 1:1 cocrystal of caffeine and methyl gallate, we demonstrated that powder compaction properties could be profoundly improved. The selection criterion for cocrystal exhibiting superior compaction properties was the presence of slip planes in crystal structure. Bulk cocrystal was prepared by suspending powders of the two pure compounds in ethanol. Fine powders of similar particle size distribution were compressed. Within the whole range of compaction pressure, the tablet tensile strength of methyl gallate was very poor (<0.5 MPa) and severe lamination and sticking occurred in almost all tablets. Tabletability of caffeine was acceptable at <150 MPa. However, at >180 MPa, severe lamination of caffeine tablets suddenly occurred. Tablet tensile strength dropped sharply at >240 MPa. In contrast, the tabletability of the cocrystal was excellent over the entire pressure range. Tablet tensile strength of the cocrystal was ∼2 times that of caffeine at <200 MPa, and the ratio gradually increased with increasing pressure, e.g., ∼8 fold at 350 MPa. Poor tablet tensile strength was always associated with high elastic recovery and low plasticity. The good plasticity and tabletability of the cocrystal validated the selection criterion, i.e., the presence of slip planes in crystal structure.
Along with the technology evolution for dense integration of high-power, high-frequency devices in electronics, the accompanying interfacial heat transfer problem leads to urgent demands for advanced thermal interface materials (TIMs) with both high through-plane thermal conductivity and good compressibility. Most metals have satisfactory thermal conductivity but relatively high compressive modulus, and soft silicones are typically thermal insulators (0.3 W m–1 K–1). Currently, it is a great challenge to develop a soft material with the thermal conductivity up to metal level for TIM application. This study solves this problem by constructing a graphene-based microstructure composed of mainly vertical graphene and a thin cap of horizontal graphene layers on both the top and bottom sides through a mechanical machining process to manipulate the stacked architecture of conventional graphene paper. The resultant graphene monolith has an ultrahigh through-plane thermal conductivity of 143 W m–1 K–1, exceeding that of many metals, and a low compressive modulus of 0.87 MPa, comparable to that of silicones. In the actual TIM performance measurement, the system cooling efficiency with our graphene monolith as TIM is 3 times as high as that of the state-of-the-art commercial TIM, demonstrating the superior ability to solve the interfacial heat transfer issues in electronic systems.
With the increasing integration of devices in electronics fabrication, there are growing demands for thermal interface materials (TIMs) with high through-plane thermal conductivity for efficiently solving thermal management issues. Graphene-based papers consisting of a layer-by-layer stacked architecture have been commercially used as lateral heat spreaders; however, they lack in-depth studies on their TIM applications due to the low through-plane thermal conductivity (<6 W m–1 K–1). In this study, a graphene hybrid paper (GHP) was fabricated by the intercalation of silicon source and the in situ growth of SiC nanorods between graphene sheets based on the carbothermal reduction reaction. Due to the formation of covalent C–Si bonding at the graphene–SiC interface, the GHP possesses a superior through-plane thermal conductivity of 10.9 W m–1 K–1 and can be up to 17.6 W m–1 K–1 under packaging conditions at 75 psi. Compared with the current graphene-based papers, our GHP has the highest through-plane thermal conductivity value. In the TIM performance test, the cooling efficiency of the GHP achieves significant improvement compared to that of state-of-the-art thermal pads. Our GHP with characteristic structure is of great promise as an inorganic TIM for the highly efficient removal of heat from electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.