The successful demonstration of a tandem enzymatic catalyst which utilizes stellate macroporous silica nanospheres (Stellate MSN) platform as dual-enzyme host is reported herein. Upon simultaneous loading of beta-glucosidase and glucose isomerase inside their porous structure, Stellate MSNs-featuring a hierarchical pore arrangement and large surface area, show capability to perform a cascade reaction that converts cellobiose, a cellulosic hydrolysis product, into glucose and further to fructose. The silica platform provides a modality for substrate channelling which involves the transfer of the cascade intermediate, glucose, to the next enzyme without first diffusing to the bulk. A key aspect to this proof-of-concept is the two-enzyme system working in an optimized pH domain to fit the modus operandi for both enzymes. The concept could be extrapolated to other enzyme tandems, with potential to impact dramatically enzymatic processes which require multi-catalyst, one-pot transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.