We propose three approaches to obtain flame-retardant benzoxazines. In the first approach, we synthesize a novel benzoxazine (dopot-m) from a phosphorus-containing triphenol (dopotriol), formaldehyde, and methyl amine. Dopot-m is copolymerized with a commercial benzoxazine [6',6-bis(3-phenyl-3,4-dihydro-2H-1,3-benzoxazineyl)methane (F-a)] or diglycidyl ether of bisphenol A (DGEBA). The thermal properties and flame retardancy of the F-a/dopot-m copolymers increase with the content of dopot-m. As for the dopot-m/DGEBA curing system, the glass-transition temperature of the dopot-m/DGEBA copolymer is 252 degrees C, which is higher than that of poly (dopot-m). The 5% decomposition temperature of the dopot-m/DGEBA copolymer increases from 323 to 351 degrees C because of the higher crosslinking density caused by the reaction of phenolic OH and epoxy. In the second approach, we incorporate the element phosphorus into benzoxazine via the curing reaction of dopotriol. and F-a. After the curing, the thermal properties of the F-a/dopotriol copolymers are almost the same as those of neat poly(F-a), and this implies that we can incorporate the flame-retardant element phosphorus into the polybenzoxazine without sacrificing any thermal properties. In the third approach, we react dopo with electron-deficient benzoxazine to incorporate the element phosphorus. After the curing, the glass-transition temperatures of polybenzoxazines decrease slightly with the content of dopo, mainly because of the smaller crosslinking density of the resultant polybenzoxazines. (c) 2006 Wiley Periodicals, Inc
Three fluorinated benzoxazines (14–16), which cannot be synthesized by the traditional one‐step approaches, were synthesized by a three‐step procedure using fluorinated aromatic diamines (2–4) as starting materials. The structures of the monomers were confirmed by 1H NMR, IR, and high‐resolution mass spectra. The low dielectric thermosets, P(14–16), were prepared by ring‐opening of (14–16). IR analysis was utilized to monitor the ring‐opening reaction of (14–16) and to propose the structures of P(14–16). The thermal and dielectric properties of P(14–16) were studied and compared with a nonfluorinated polybenzoxazine P(13), which is derived form the ring‐opening of 2,2‐bis(4‐aminophenoxy)phenyl)propane (1). Besides, the structure–property relationship of the P(13–16) is discussed. According to Tg measurement, the ortho‐positioned CF3 substituents impart greater steric hindrance for ring‐opening of benzoxazines than CF3 substituents of hexafluoropropane. Incorporating a biphenol F‐based benzoxazine, (F‐a), into fluorinated benzoxazines (15–16) can dilute the effect of ortho‐positioned CF3 substituents on steric hindrance, leading to a higher crosslinking density and consequently a higher Tg. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4970–4983, 2008
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.