In recent years, much attention has been paid to the application of high-speed centrifugal pumps; still, the development of this pump faces several challenges. In order to obtain a more comprehensive understanding of the high-speed centrifugal pump, this paper reviewed the engineering application, technical challenges, and feasible solutions of this pump from the aspects of hydraulic design, including cavitation, hydraulic excitation, efficiency issue at an ultra-low specific speed, and the solution to these problems. The current state of the structural design of the high-speed centrifugal pump was briefly described in addition. For the faults in the existing high-speed centrifugal pump, some research studies on pump monitoring were presented. Finally, the status and shortcomings of the design of the pump were simply analyzed and summarized. It is hoped that this study can provide some references for the design and practical usage of high-speed centrifugal pumps.
The undersea collecting vehicle is one of the three main parts in the deep-sea exploitation system. The Coandă effect-based collector picks up manganese nodules by providing an adverse pressure difference over the nodule, through the jet flowing around a curved wall. In order to overcome the drawbacks of repeated prototyping and experimenting in the traditional design procedure of the Coandă effect-based collector, the theoretical guide should be well placed to ensure correct design of the strongly related parameters of the collector. In this paper, a simplified model of curved wall jets was developed and the solution of approximate closed form was obtained to predict the lift force of the nodules. The variational tendencies of velocity, pressure and single-particle lift index perpendicular to the curved wall were investigated and the Coandă effects were found to be stronger with higher initial velocity, higher non-dimensional jet slot height and lower non-dimensional wall height. A CFD-DEM simulation of a number of particles was additionally performed to give more insight into the predictive accuracy of the simplified theory. Target lift force was found to be related to high efficiency in collection of particles, resulting in certain predictability of the theoretical model to the nodule lifting in a pre-prototype hydraulic device based on the Coandă effect.
The deep-sea mining vehicle is the main component of the undersea exploitation system, which gathers polymetallic nodules with its professionally designed seabed collector. The Coandă effect-based collecting method is an improved hydraulic method that forms an adverse pressure gradient over the nodules by performing wall jet flow over a rounded convex surface. In comparison to the circular cylinder surface, the effect of wall jet over the logarithmic spiral surface has a self-preserving nature, which can be advantageous to the nodule collecting. However, this effect on lift capability has seldom been studied before. In the present investigation, a reduced form modelling jet flows over logarithmic spiral surfaces was performed to study the flow characteristics and lift ability of the newly designed Coandă effect-based collector. The jet-half width has been optimized to study the influence of wall curvature on the growth rate. The lift ability was found to be stronger with larger jet exit velocity, local curvature, or non-dimensional jet slot height. The growth rate, which represents the width of the main jet flow, went up in proportion to the downstream distance. The lift capability of jet flow in logarithmical spiral of x/R = 1 is significantly better than that of x/R = 2/3.
Along with the crucial requirement for efficiency improvement in the cutting-edge petrochemical technology, the evaluation of the dynamic performance characteristics of high-speed pump is becoming increasingly important. It has become a main topic in the research of high-speed pump to minimize the pressure pulsation induced by the fluid in the pump body, so as to reduce the mechanical vibration. Although the research on the transient flow characteristic and pressure fluctuation of a high-speed pump with straight blades is of great significance, it has been seldom explored. In this work, the flow instability of a 16 straight-blade high-speed centrifugal pump is studied numerically at a rotational speed of 8500 rpm and flow rate of 3 m3/h. Results show that with the influence of rotor-stator interaction, time-domain pressure signals at the tongue show double peak characteristic, whereas a single peak characteristic exists at the diffuser wall. The pressure fluctuation near the tongue is reduced to approximately half of that at the volute wall by the water ring effect accompanied with the high-pressure factor. At the tongue region, the amplitude of the blade passing frequency is reduced by the unsteady flow, whereas the harmonic wave was increased at 2–4 times of the blade passing frequency.
Along with the pressing demand for the long-distance transportation of coarse particles in the deep-sea mining industry, evaluating the slurry pump’s passing through and erosive wear by studying the particle motion characteristics and the slurry behavior is becoming increasingly important. Research on the influence of leakage flow through the clearance and balancing devices on the motion characteristic of granular grain flow is of great significance but has been seldom studied. This study coupled the discrete element method with the CFD method to investigate the comprehensive effect of a double-stage slurry pump’s main flow and leakage flow on the motion characteristics of particles with a 10 mm diameter. Results show that the leakage flow occupation in main flow falls from 26%–27% to 8%–9% for the two stages, with the flow rate increasing from 80 m3/h to 200 m3/h. In the first stage with leakage, accumulation of coarse particles was observed at the impeller eye, which should be paid much attention to slurry pumps’ operation to eliminate the chance of blockage. In the nonleak situation, although the increment of the average kinetic energy of particles through the impeller is more significant than in the leak case, most of them dissipate primarily by more than 10% collision in the bowl diffuser. In the leak or nonleak case, the average kinetic energy of particles was more than twice through the first stage but only 1.1 times through the second stage. The selection of stages in the slurry pump design should consider the limitation of particle velocity improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.