We propose and numerically demonstrate an 800 Gbps silicon photonic transmitter with sub-decibel surface-normal optical interfaces. The silicon photonic transmitter is composed of eight silicon Mach–Zehnder optical modulators and an interleaved AMMI WDM device. This WDM device comprises two 1 × 4 angled MMI and a Mach–Zehnder interferometer (MZI) optical interleaver with an apodized bidirectional grating which has about −0.5 dB coupling loss. Both the Mach–Zehnder electro-optical modulators and MZI optical interleaver regard the bidirectional grating coupler as vertical optical coupler and 3-dB power splitter/combiner. By importing the S-parameter matrices of all the components which have been carefully designed in simulation software, the circuit-level model of the optical transmitter can be built up. On this basis, the static and dynamic performance characterization were carried out numerically. For NRZ modulation, the optical transmitter exhibits the overall optical loss of 4.86–6.72 dB for eight wavelength channels. For PAM4 modulation, the optical loss is about 0.5 dB larger than that of NRZ modulation, which varies between 5.38–7.27 dB. From the eye diagram test results, the WDM silicon photonic transmitter can achieve single channel data transmission at 100 Gb/s NRZ data or 50 GBaud/s PAM4 symbol rate with acceptable bit error rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.