An enormous effort has been put into designing nanoparticles (NPs) with controlled biodistributions, prolonged plasma circulation times, and/or enhanced tissue targeting. However, little is known about how to design NPs with precise distributions in the target tissues. In particular, understanding NP tumor penetration and accumulation characteristics is crucial to maximizing the therapeutic potential of drug molecules carried by the NPs. In this study, we employed poly(amidoamine) (PAMAM) dendrimers, given their well-controlled size (<10 nm) and surface charge, to understand how the physical properties of NPs govern their tumor accumulation and penetration behaviors. We demonstrate for the first time that the size and surface charge of PAMAM dendrimers control their distributions in both a 3D multicellular tumor spheroid (MCTS) model and a separate extracellular matrix (ECM) model, which mimics the tumor microenvironment. Smaller PAMAM dendrimers not only diffused more rapidly in the ECM model but also efficiently penetrated to the MCTS core compared to their larger counterparts. Furthermore, cationic, amine-terminated PAMAM dendrimers exhibited the greatest accumulation in MCTS compared to either charge-neutral or anionic dendrimers. Our findings indicate that the size and surface charge of PAMAM dendrimers may tailor their tumor accumulation and penetration behaviors. These results suggest that controlled tumor accumulation and distinct intratumoral distributions can be achieved by simply controlling the size and surface charge of dendrimers, which may also be applicable for other similarly sized NPs.
Advances in nanotechnology have had profound impacts on therapeutic delivery, leading to the development of nanomaterials engineered with large carrying capabilities and targeting functionalities. Among the nanomaterials, dendrimers have garnered particular attention from researchers owing to their well-defined structure, near-monodispersity, and ease of multifunctionalization. As hyperbranched, three-dimensional macromolecules, dendrimers can be engineered to target and deliver a wide range of therapeutic agents, including small molecules, peptides, and genes, reducing their systemic toxicities and enhancing efficacies. In this review, we provide a comprehensive overview of the commonly employed dendrimer-based nanocarrier designs, including dendrimer conjugates, Janus dendrimers, and linear-dendritic block copolymers. The discussion will progress through the basic synthetic strategies of dendrimer-based nanocarriers, followed by the potential clinical applications related to their unique structural properties. Finally, the major challenges that these nanocarriers are currently facing in their clinical translation and possible solutions to address these issues will be discussed, with the aim to provide researchers in the drug delivery field a good understanding of the potential utilities of dendrimer-based nanocarriers. WIREs Nanomed Nanobiotechnol 2017, 9:e1409. doi: 10.1002/wnan.1409 For further resources related to this article, please visit the WIREs website.
PEGylated dendron-based copolymers (PDC) with different end-group functionalities (-NH2, -COOH, and –Ac) were synthesized and self-assembled into dendron micelles to investigate the effect of terminal surface charges on size, morphology, and cellular interactions of the micelles. All of the dendron micelles exhibited similar sizes (20–60 nm) and spherical morphologies, as measured using dynamic light scattering and transmission electron microscopy, respectively. The cellular interactions of dendron micelles were evaluated using confocal microscopy and flow cytometry. Surprisingly, although amine-terminated dendrimers are known to strongly interact with cells non-specifically, all of the surface-modified dendron micelles exhibited charge-independent low-levels of cellular interaction. The unexpected results, particularly from the amine-terminated dendron micelles, could be attributed to: i) minimal end-group effects, as each PDC has an approximately 10-fold lower charge-number-to-molecular-weight ratio compared to the dendrimer; and ii) intra- and intermolecular hydrogen bonding between positively charged terminal groups with poly(ethylene glycol) (PEG) backbones, which leads to the sequestration of the charges, as demonstrated by atomistic molecular dynamics simulations. With the narrow size distribution, uniform morphologies, and low levels of non-specific cellular interactions, the dendron micelles offer a promising drug delivery platform.
To systematically investigate the relationship among surface charge, PEG chain length, and nano–bio interactions of dendron-based micelles (DMs), a series of PEGylated DMs with various end groups (−NH2, −Ac, and −COOH) and PEG chain lengths (600 and 2000 g/mol) are prepared and tested in vitro. The DMs with longer PEG chains (DM2K) do not interact with cells despite their positively charged surfaces. In sharp contrast, the DMs with shorter PEG chains (DM600) exhibit charge-dependent cellular interactions, as observed in both in vitro and molecular dynamics (MD) simulation results. Furthermore, all DMs with different charges display enhanced stability for hydrophobic dye encapsulation compared to conventional linear-block copolymer-based micelles, by allowing only a minimal leakage of the dye in vitro. Our results demonstrate the critical roles of the PEG chain length and polymeric architecture on the terminal charge effect and the stability of micelles, which provides an important design cue for polymeric micelles.
Engineering controllable cellular interactions into nanoscale drug delivery systems is key to enable their full potential. Here, using folic acid (FA) as a model targeting ligand and dendron micelles (DM) as a nanoparticle (NP) platform, we present a comprehensive experimental and modeling investigation of the structural properties of DMs that govern the formation of controllable, FA-mediated cellular interactions. Our experimental results demonstrate that a high level of control over the specific cell interactions of FA-targeted DMs can be achieved through modulation of the PEG corona length and the FA content. Using various molecular weight PEGs (0.6K, 1K, and 2K g/mol) and contents of dendron-FA conjugate incorporated into DMs (0, 5, 10, 25 wt %), the cell interactions of the targeted DMs could be controlled to exhibit minimal to >25-fold enhancement over nontargeted DMs. Molecular dynamics simulations indicated that structural characteristics, such as solvent accessible surface area of FA, local PEG density near FA, and FA mobility, account in part for the experimental differences in cellular interactions. The molecular structure that allows FA to depart from the surface of DMs to facilitate the initial cell surface binding was revealed to be the most important contributor for determining FA-mediated cellular interactions of DMs. The modular properties of DMs in controlling their specific cell interactions support the potential of DMs as a delivery platform and offer design cues for future development of targeted NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.