In order to study the problem that the flow in the internal channel of the microfluidic chip is different from that of the macroscopic system by the FD numerical simulation image imaging technology. Taking the liquid-liquid extraction of microfluidic chip as the research object, this paper analyzes the theoretical basis, working principle, structural parameters, and the influence of working parameters on the fluid flow of liquid-liquid extraction. The results are as follows: when the inlet velocity of flowing liquid is 10^(−5) m/s, the diffusion efficiency can still be maintained at 95%; the double ψ-type aqueous phase showed laminar flow, the two-phase contact interface increased compared with the bottom flow rate, and the extraction efficiency increased to 98%; the extraction efficiency of double ψ type is higher than that of double Y-type: when the flow velocity ratio increases from v a q : v oil = 1 : 2 to v a q : v oil = 5 : 1 , the extraction efficiency increases to 99.8%; the experimental extraction efficiency is compared with the diffusion efficiency simulated by simulation. The diffusion efficiency of the cross type is 1.05 times that of the extraction efficiency, and that of the cylindrical type is 1.04 times that of the extraction efficiency. In this study, CFD is used to simulate the characteristics of droplet microfluidic multiphase flow, which enriches the theoretical method and research experience of liquid-liquid laminar flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.