Electrokinetic flow instabilities occur under high electric fields in the presence of electrical conductivity gradients. Such instabilities are a key factor limiting the robust performance of complex electrokinetic bio-analytical systems, but can also be exploited for rapid mixing and flow control for microscale devices. This paper reports a representative flow instability phenomenon studied using a microfluidic T-junction with a cross-section of 11 µm by 155 µm. In this system, aqueous electrolytes of 10:1 conductivity ratio were electrokinetically driven into a common mixing channel by a steady electric field. Convectively unstable waves were observed with a nominal threshold field of 0.5 kV cm −1 , and upstream propagating waves were observed at 1.5 kV cm −1 . A physical model has been developed for this instability which captures the coupling between electric and flow fields. A linear stability analysis was performed on the governing equations in the thin-layer limit, and Briggs-Bers criteria were applied to select physically unstable modes and determine the nature of instability. The model predicts both qualitative trends and quantitative features that agree very well with experimental data, and shows that conductivity gradients and their associated bulk charge accumulation are crucial for such instabilities. Comparison between theory and experiments suggests the convective role of electro-osmotic flow. Scaling analysis and numerical results show that the instability is governed by two key controlling parameters: the ratio of dynamic to dissipative forces which governs the onset of instability, and the ratio of electroviscous to electro-osmotic velocities which governs the convective versus absolute nature of instability.
Electrokinetic flow is leveraged in a variety of applications, and is a key enabler of on-chip electrophoresis systems. An important sub-class of electrokinetic devices aim to pump and control electrolyte working liquids with spatial gradients in conductivity. These high-gradient flows can become unstable under the application of a sufficiently strong electric field. In this work the instability physics is explored using theoretical and numerical analyses, as well as experimental observations. The flow in a long, rectangular-cross-section channel is considered. A conductivity gradient is assumed to be orthogonal to the main flow direction, and an electric field is applied in the streamwise direction. It is found that such a system exhibits a critical electric field above which the flow is highly unstable, resulting in fluctuating velocities and rapid stirring. Modeling results compare well with experimental observations. The model indicates that the fluid forces associated with the thin dimension of the channel ͑transverse to both the conductivity gradient and the main flow direction͒ tends to stabilize the flow. These results have application to the design and control of on-chip assays that require high conductivity gradients, and provides a rapid mixing mechanism for low Reynolds number flows in microchannels.
Superhydrophobicity on structured surfaces is frequently achieved via the maintenance of liquid-air interfaces adjacent to the trapped air pockets. These interfaces, however, are subject to instabilities due to the Cassie-Baxter-to-Wenzel transition and total wetting. The current work examines in situ liquid-air interfaces on a submerged surface patterned with cylindrical micropores using confocal microscopy. Both the pinned Cassie-Baxter and depinned metastable states are directly observed and measured. The metastable state dynamically evolves, leading to a transition to the Wenzel state. This process is extensively quantified under different ambient pressure conditions, and the data are in good agreement with a diffusion-based model prediction. A similarity law along with a characteristic time scale is derived which governs the lifetime of the air pockets and which can be used to predict the longevity of underwater superhydrophobicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.