Abstract. The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5%w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value<0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.
Abstract. The purpose of this study is to enhance the dissolution rate of prednisone by co-grinding with Neusilin to form a complex that can be incorporated into a mini-tablet formulation for pediatrics. Prednisone-Neusilin complex was co-grinded at various ratios (1:1, 1:3, 1:5, and 1:7). The physicochemical properties of the complex were characterized by various analytical techniques including: differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), scanning electron microscope (SEM), particle size, surface area, solubility, and dissolution rate. The co-grinded prednisone-Neusilin complex (1:7) was blended with other excipients and was formulated into a 2-mm diameter mini-tablet. The minitablets were further evaluated for thickness, weight, content uniformity, and dissolution rate. To improve taste masking and stability, mini-tablets were coated by dip coating with Eudragit® EPO solution. DSC and XRPD results showed that prednisone was transformed from crystalline state into amorphous state after co-grinding with Neusilin. Particle size, surface area, and SEM results confirmed that prednisone was adsorbed to Neusilin's surface. Co-grinded prednisone-Neusilin complex (1:7) had a solubility of 0.24 mg/ mL and 90% dissolved within 20 min as compared to crystalline prednisone which had a solubility of 0.117 mg/mL and 30% dissolved within 20 min. The mini-tablets containing co-grinded prednisoneNeusilin complex (1:7) exhibited acceptable physicochemical and mechanical properties including dissolution rate enhancement. These mini-tablets were successfully dip coated in Eudragit® EPO solution to mask the taste of the drug during swallowing. This work illustrates the potential use of co-grinded prednisone-Neusilin to enhance solubility and dissolution rate as well as incorporation into a mini-tablet formulation for pediatric use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.