Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6‐methyladenosine (m6A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6A patterns. In this review, we comprehensively review the critical roles of m6A in kidney diseases and discuss the possibilities and relevance of m6A‐targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
BackgroundN6‐methyladenosine (m6A) is of great importance in renal physiology and disease progression, but its function and mechanism in renal fibrosis remain to be comprehensively and extensively explored. Hence, this study will explore the function and potential mechanism of critical regulator‐mediated m6A modification during renal fibrosis and thereby explore promising anti‐renal fibrosis agents.MethodsRenal tissues from humans and mice as well as HK‐2 cells were used as research subjects. The profiles of m6A modification and regulators in renal fibrosis were analysed at the protein and RNA levels using Western blotting, quantitative real‐time polymerase chain reaction and other methods. Methylation RNA immunoprecipitation sequencing and RNA sequencing coupled with methyltransferase‐like 3 (METTL3) conditional knockout were used to explore the function of METTL3 and potential targets. Gene silencing and overexpression combined with RNA immunoprecipitation were performed to investigate the underlying mechanism by which METTL3 regulates the Ena/VASP‐like (EVL) m6A modification that promotes renal fibrosis. Molecular docking and virtual screening with in vitro and in vivo experiments were applied to screen promising traditional Chinese medicine (TCM) monomers and explore their mechanism of regulating the METTL3/EVL m6A axis and anti‐renal fibrosis.ResultsMETTL3 and m6A modifications were hyperactivated in both the tubular region of fibrotic kidneys and HK‐2 cells. Upregulated METTL3 enhanced the m6A modification of EVL mRNA to improve its stability and expression in an insulin‐like growth factor 2 mRNA‐binding protein 2 (IGF2BP2)‐dependent manner. Highly expressed EVL binding to Smad7 abrogated the Smad7‐induced suppression of transforming growth factor‐β (TGF‐β1)/Smad3 signal transduction, which conversely facilitated renal fibrosis progression. Molecular docking and virtual screening based on the structure of METTL3 identified a TCM monomer named isoforsythiaside, which inhibited METTL3 activity together with the METTL3/EVL m6A axis to exert anti‐renal fibrosis effects.ConclusionsCollectively, the overactivated METTL3/EVL m6A axis is a potential target for renal fibrosis therapy, and the pharmacological inhibition of METTL3 activity by isoforsythiaside suggests that it is a promising anti‐renal fibrosis agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.