Graphical abstractDipyridamole bound to the SARS-CoV-2 protease Mpro after identified via the virtual screening and bioassay validation, and thus suppressed viral replication in vitro. As a result, dipyridamole supplementation was associated with significantly decreased concentrations of D-dimers, increased lymphocyte and platelet recovery in the circulation, and markedly improved clinical outcomes in comparison to the control patients.Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause acute respiratory distress syndrome, hypercoagulability, hypertension, and multiorgan dysfunction.Effective antivirals with safe clinical profile are urgently needed to improve the overall prognosis. In an analysis of a randomly collected cohort of 124 patients with Corona Virus Disease 2019 , we found that hypercoagulability as indicated by elevated concentrations of D-dimers was associated with disease severity. By virtual screening of a U.S. Food and Drug Administration (FDA) approved drug library, we identified an anticoagulation agent dipyridamole (DIP) in silico, which suppressed SARS-CoV-2 replication in vitro. In a proof-of-concept trial involving 31 patients with COVID-19, DIP supplementation was associated with significantly decreased concentrations of D-dimers (P<0.05), increased lymphocyte and platelet recovery in the circulation, and markedly improved clinical outcomes in comparison to the control patients. In particular, all 8 of the DIP-treated severely ill patients showed remarkable improvement: 7 patients (87.5%) achieved clinical cure and were discharged from the hospitals while the remaining 1 patient (12.5%) was in clinical remission.
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and thus repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a restraint energy distribution (RED) function, making the practical FEP-ABFE−based virtual screening of the existing drug library possible. As a result, out of 25 drugs predicted, 15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro. The most potent one is dipyridamole (inhibitory constant Ki = 0.04 µM) which has shown promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro. We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts.
A new series of phosphodiesterase-9 (PDE9) inhibitors that contain a scaffold of 6-amino-pyrazolopyrimidinone have been discovered by a combination of structure-based design and computational docking. This procedure significantly saved load of chemical synthesis and is an effective method for the discovery of inhibitors. The best compound 28 has an IC50 of 21 nM and 3.3 µM respectively for PDE9 and PDE5, and about three orders of magnitude of selectivity against other PDE families. The crystal structure of the PDE9 catalytic domain in complex with 28 has been determined and shows a hydrogen bond between 28 and Tyr424. This hydrogen bond may account for the 860-fold selectivity of 28 against PDE1B, in comparison with about 30-fold selectivity of BAY73-6691. Thus, our studies suggest that Tyr424, a unique residue of PDE8 and PDE9, is a potential target for improvement of selectivity of PDE9 inhibitors.
ABSTRACT:The metabolic activation of aristolochic acids (AAs) that have been demonstrated to be mutagenic and carcinogenic was investigated. In vitro metabolism study indicated that AAs were metabolized to N-hydroxyaristolactam, which could be either reduced to aristolactams or rearranged to 7-hydroxyaristolactams via the Bamberger rearrangement. In vivo metabolism study is important because the intermediates (aristolactam-nitriumion) of the nitroreduction process are thought to be responsible for the carcinogenicity of AAs. Liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry (MS/MS) were applied to the analyses of a series of positional isomers of hydroxyaristolactams in rat urine samples after the in vivo study of AAs. Three hydroxylated metabolites of aristolactam II and two hydroxylated metabolites of aristolactam I were identified. The structures of the positional isomers were elucidated from the interpretation of MS/MS spectra and theoretical calculations. In addition, several new metabolites were detected in the rat urine by high-resolution mass spectrometry and MS/MS, including those from the decarboxylation of AAs and the conjugations of acetylation, glucuronidation, and sulfation of aristolochic acid Ia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.