The strength of superalloys is strongly influenced by γ′ precipitates, whose size and volume fraction which can be adjusted by heat treatments. According to classical precipitation strengthening models, an increasing precipitate diameter should lead to a transition from weak to strong coupling of the dislocation pairs that form superdislocations in the γ′ phase. We show that long‐term annealing of the Ni‐base superalloy A718Plus at 670 and 680 °C increases the alloy's strength without significantly changing the grain size and η fraction. To understand the effect of the slight increase in γ′ size, detailed atom probe tomography (APT) was performed. Here, different field evaporation rates of the phases strongly affect the determination of the volume fraction when using the usual isosurface construction. This can be mitigated by considering the number density of atoms inside and outside the γ′ precipitates. Using an approximation of the precipitate shapes and arrangements from the APT data in atomistic simulations revealed that precipitate shearing by both, weakly and strongly coupled dislocations can occur in the same sample due to the wide distribution of precipitate sizes. These results highlight the need for advanced strengthening models that take into account the γ′ size distribution.
Reversible shape memory polymers (SRMPs) have been identified as having great potential for biomedical applications due to their ability to switch between different shapes responding to stimuli. In this paper, a chitosan/glycerol (CS/GL) film with a reversible shape memory behavior was prepared, and the reversible shape memory effect (SME) and its mechanism were systematically investigated. The film with 40% glycerin/chitosan mass ratio demonstrated the best performance, with 95.7% shape recovery ratio to temporary shape one and 89.4% shape recovery ratio to temporary shape two. Moreover, it shows the capability to undergo four consecutive shape memory cycles. In addition, a new curvature measurement method was used to accurately calculate the shape recovery ratio. The suction and discharge of free water change the binding form of the hydrogen bonds inside the material, which makes a great reversible shape memory impact on the composite film. The incorporation of glycerol can enhance the precision and repeatability of the reversible shape memory effect and shortens the time used during this process. This paper gives a hypothetical premise to the preparation of two-way reversible shape memory polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.