This paper proposes an optimization method for electric vehicle charging station locations considering dynamic charging demand. Firstly, the driving characteristics and charging characteristics of the electric vehicle are obtained based on the driving trajectory of the electric vehicle, and the charging demand is predicted using a Monte Carlo simulation. Then a mathematical model with the goal of minimizing the overall cost is constructed, and the impact on carbon emissions is considered in the model. In order to better solve the location model, an improved whale optimization algorithm based on a hybrid strategy is proposed. Finally, the location problem of Shenzhen electric taxi charging stations is analyzed as an example. The results show that when the number of charging stations is set to 19, the comprehensive cost is the smallest and the energy saving and emission reduction effect is good. The improved whale optimization algorithm also has higher solution accuracy and convergence speed than other classical algorithms.
In a complex environment, although the artificial potential field (APF) method of improving the repulsion function solves the defect of local minimum, the planned path has an oscillation phenomenon which cannot meet the vehicle motion. In order to improve the efficiency of path planning and solve the oscillation phenomenon existing in the improved artificial potential field method planning path. This paper proposes to combine the improved artificial potential field method with the rapidly exploring random tree (RRT) algorithm to plan the path. First, the improved artificial potential field method is combined with the RRT algorithm, and the obstacle avoidance method of the RRT algorithm is used to solve the path oscillation; The vehicle kinematics model is then established, and under the premise of ensuring the safety of the vehicle, a model predictive control (MPC) trajectory tracking controller with constraints is designed to verify whether the path planned by the combination of the two algorithms is optimal and conforms to the vehicle motion. Finally, the feasibility of the method is verified in simulation. The simulation results show that the method can effectively solve the problem of path oscillation and can plan the optimal path according to different environments and vehicle motion.
In the field of automated technology research and development, trajectory tracking plays a crucial role in the energy consumption of the vehicle’s power battery. Reducing the deviation between the actual trajectory and the reference trajectory is the focus of trajectory tracking research. This paper proposes the use of the model predictive control (MPC) method to reduce the deviation of lateral and longitudinal position between the actual driving trajectory and the reference trajectory. First, the driving conditions of the vehicle are reflected by establishing the vehicle dynamics model. Then, the MPC trajectory tracking controller is built by designing the objective function with constraints; Finally, the feasibility of this approach was verified by a joint Carsim-Simulink simulation. The simulation results show that the MPC controller designed in this paper can track the trajectory better, and reduce the lateral and longitudinal position deviation. To a certain extent, the battery energy consumption is reduced and the accuracy of the tracking trajectory and the safety of vehicle driving are improved.
In order to solve the design problem of electric vehicle charging station distribution, based on the consideration of user and investor costs, this paper establishes a mixed integer model for charging station site selection based on game theory ideas. Among them, the user cost is determined by two indicators, namely, the cost of time for users to reach the charging station and the cost of time for users to wait in line, while the cost of the charging station is determined by the construction cost and the daily operation and maintenance cost. In the established model, the hierarchical analysis is used to minimize the combined cost of users and charging stations as the objective. In addition, an improved artificial bee colony algorithm is designed to solve the model. The improved algorithm adds a neighborhood search method and a feasible decoding scheme to the honey bee harvesting and tracking process, thus solving the problems of low search accuracy, poor convergence, and inability to directly calculate the mixed integer model of the original algorithm. Simulation results show that the improved artificial bee colony algorithm can effectively solve the mixed integer model and has higher search accuracy and convergence speed compared with the traditional method. By applying the algorithm to solve the siting model, the location and number of charging stations can be clearly planned, thus improving charging efficiency and reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.