Spatiotemporal data aggregated over regions or time windows at various resolutions demonstrate heterogeneous patterns and dynamics in each resolution. Meanwhile, the multi-resolution characteristic provides rich contextual information, which is critical for effective long-sequence forecasting. The importance of such inter-resolution information is more significant in practical cases, where fine-grained data is usually collected via approaches with lower costs but also lower qualities compared to those for coarse-grained data. However, existing works focus on uni-resolution data and cannot be directly applied to fully utilize the aforementioned extra information in multi-resolution data. In this work, we propose Spatiotemporal Koopman Multi-Resolution Network (ST-KMRN), a physics-informed learning framework for long-sequence forecasting from multi-resolution spatiotemporal data. Our method jointly models data aggregated in multiple resolutions and captures the inter-resolution dynamics with the self-attention mechanism. We also propose downsampling and upsampling modules among resolutions to further strengthen the connections among data of multiple resolutions. Moreover, we enhance the modeling of intra-resolution dynamics with physics-informed modules based on Koopman theory. Experimental results demonstrate that our proposed approach achieves the best performance on the long-sequence forecasting tasks compared to baselines without a specific design for multi-resolution data.
We study offline recommender learning from explicit rating feedback in the presence of selection bias. A current promising solution for dealing with the bias is the inverse propensity score (IPS) estimation. However, the existing propensity-based methods can suffer significantly from the propensity estimation bias. In fact, most of the previous IPS-based methods require some amount of missing-completely-at-random (MCAR) data to accurately estimate the propensity. This leads to a critical self-contradiction; IPS is ineffective without MCAR data, even though it originally aims to learn recommenders from only missing-not-at-random feedback. To resolve this propensity contradiction, we derive a propensity-independent generalization error bound and propose a novel algorithm to minimize the theoretical bound via adversarial learning. Our theory and algorithm do not require a propensity estimation procedure, thereby leading to a well-performing rating predictor without the true propensity information. Extensive experiments demonstrate that the proposed algorithm is superior to a range of existing methods both in rating prediction and ranking metrics in practical settings without MCAR data. Full version of the paper (including the appendix) is available at: https://arxiv.org/abs/1910.07295.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.