Background With the accumulation of electronic health records and the development of artificial intelligence, patients with cancer urgently need new evidence of more personalized clinical and demographic characteristics and more sophisticated treatment and prevention strategies. However, no research has systematically analyzed the application and significance of artificial intelligence based on electronic health records in cancer care. Objective The aim of this study was to conduct a review to introduce the current state and limitations of artificial intelligence based on electronic health records of patients with cancer and to summarize the performance of artificial intelligence in mining electronic health records and its impact on cancer care. Methods Three databases were systematically searched to retrieve potentially relevant papers published from January 2009 to October 2020. Four principal reviewers assessed the quality of the papers and reviewed them for eligibility based on the inclusion criteria in the extracted data. The summary measures used in this analysis were the number and frequency of occurrence of the themes. Results Of the 1034 papers considered, 148 papers met the inclusion criteria. Cancer care, especially cancers of female organs and digestive organs, could benefit from artificial intelligence based on electronic health records through cancer emergencies and prognostic estimates, cancer diagnosis and prediction, tumor stage detection, cancer case detection, and treatment pattern recognition. The models can always achieve an area under the curve of 0.7. Ensemble methods and deep learning are on the rise. In addition, electronic medical records in the existing studies are mainly in English and from private institutional databases. Conclusions Artificial intelligence based on electronic health records performed well and could be useful for cancer care. Improving the performance of artificial intelligence can help patients receive more scientific-based and accurate treatments. There is a need for the development of new methods and electronic health record data sharing and for increased passion and support from cancer specialists.
BACKGROUND With the accumulation of electronic health records data and the development of artificial intelligence, patients with cancer urgently need new evidence of more personalized clinical and demographic characteristics and more sophisticated treatment and prevention strategies. However, no research has systematically analyzed the application and significance of electronic health records and artificial intelligence in cancer care. OBJECTIVE In this study, we reviewed the literature on the application of AI based on EHR data from patients with cancer, hoping to provide reference for subsequent researchers, and help accelerate the application of EHR data and AI technology in the field of cancer, so as to help patients get more scientific and accurate treatment. METHODS Three databases were systematically searched to retrieve potentially relevant articles published from January 2009 to October 2020. A combination of terms related to "electronic health records", "artificial intelligence" and "cancer" was used to search for these publications. RESULTS Of the 1034 articles considered, 148 met the inclusion criteria. The review has shown that ensemble methods and deep learning were on the rise. It presented the representative literatures on the subfield of cancer diagnosis, treatment and care. In addition, the vast majority of studies in this area were based on private institutional databases, resulting in poor portability of the proposed methodology process. CONCLUSIONS The use of new methods and electronic health records data sharing and fusion were recommended for future research. With the help of specialists, artificial intelligence and the mining of massive electronic medical records could provide great opportunities for improving cancer management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.