The Arabidopsis thaliana genome encodes 29 AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) genes, which evolved into two phylogenic clades. The AHL proteins contain one or two AT-hook motif(s) and one plant and prokaryote conserved (PPC)/domain of unknown function #296 (DUF296) domain. Seedlings lacking both SOB3/AHL29 and ESC/AHL27 confer a subtle long-hypocotyl phenotype compared with the WT or either single-null mutant. In contrast, the missense allele sob3-6 confers a dramatic long-hypocotyl phenotype in the light. In this study, we examined the dominant-negative feature of sob3-6 and found that it encodes a protein with a disrupted AT-hook motif that abolishes binding to AT-rich DNA. A loss-of-function approach demonstrated different, yet redundant, contributions of additional AHL genes in suppressing hypocotyl elongation in the light. We showed that AHL proteins interact with each other and themselves via the PPC/DUF296 domain. AHLs also share interactions with other nuclear proteins, such as transcription factors, suggesting that these interactions also contribute to the functional redundancy within this gene family. The coordinated action of AHLs requires an AT-hook motif capable of binding AT-rich DNA, as well as a PPC/DUF296 domain containing a conserved Gly-Arg-Phe-Glu-Ile-Leu region. Alteration of this region abolished SOB3/AHL29's physical interaction with transcription factors and resulted in a dominant-negative allele in planta that was phenotypically similar to sob3-6. We propose a molecular model where AHLs interact with each other and themselves, as well as other nuclear proteins, to form complexes which modulate plant growth and development.enhanceosome | seedling establishment
The Arabidopsis thaliana hypocotyl is a robust system for studying the interplay of light and plant hormones, such as brassinosteroids (BRs), in the regulation of plant growth and development. Since BRs cannot be transported between plant tissues, their cellular levels must be appropriate for given developmental fates. BR homeostasis is maintained in part by transcriptional feedback regulation loops that control the expression of key metabolic enzymes, including the BRinactivating enzymes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Here, we find that the NAC transcription factor (TF) ATAF2 binds the promoters of BAS1 and SOB7 to suppress their expression. ATAF2 restricts the tissue-specific expression of BAS1 and SOB7 in planta. ATAF2 loss-and gain-of-function seedlings have opposite BR-response phenotypes for hypocotyl elongation. ATAF2 modulates hypocotyl growth in a light-dependent manner, with the photoreceptor phytochrome A playing a major role. The photomorphogenic phenotypes of ATAF2 loss-and gain-of-function seedlings are suppressed by treatment with the BR biosynthesis inhibitor brassinazole. Moreover, the disruption of BAS1 and SOB7 abolishes the short-hypocotyl phenotype of ATAF2 loss-offunction seedlings in low fluence rate white light, demonstrating an ATAF2-mediated connection between BR catabolism and photomorphogenesis. ATAF2 expression is suppressed by both BRs and light, which demonstrates the existence of an ATAF2-BAS1/SOB7-BR-ATAF2 feedback regulation loop, as well as a light-ATAF2-BAS1/SOB7-BR-photomorphogenesis pathway. ATAF2 also modulates root growth by regulating BR catabolism. As it is known to regulate plant defense and auxin biosynthesis, ATAF2 therefore acts as a central regulator of plant defense, hormone metabolism and light-mediated seedling development.
Our results suggest that BM-SMPC may be useful in studying SMC differentiation and have high potential for development of cell therapies for the treatment of cardiovascular disease.
Our results suggest that hair follicles may be an easily accessible, autologous, and rich source of functional SMPC for cardiovascular tissue engineering and regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.