Chirality at the molecular level is found in diverse biological structures, such as polysaccharides, proteins and DNA, and is responsible for many of their unique properties. Introducing chirality into porous inorganic solids may produce new types of materials that could be useful for chiral separation, stereospecific catalysis, chiral recognition (sensing) and photonic materials. Template synthesis of inorganic solids using the self-assembly of lyotropic liquid crystals offers access to materials with well-defined porous structures, but only recently has chirality been introduced into hexagonal mesostructures through the use of a chiral surfactant. Efforts to impart chirality at a larger length scale using self-assembly are almost unknown. Here we describe the development of a photonic mesoporous inorganic solid that is a cast of a chiral nematic liquid crystal formed from nanocrystalline cellulose. These materials may be obtained as free-standing films with high surface area. The peak reflected wavelength of the films can be varied across the entire visible spectrum and into the near-infrared through simple changes in the synthetic conditions. To the best of our knowledge these are the first materials to combine mesoporosity with long-range chiral ordering that produces photonic properties. Our findings could lead to the development of new materials for applications in, for example, tuneable reflective filters and sensors. In addition, this type of material could be used as a hard template to generate other new materials with chiral nematic structures.
Solid polymer electrolytes (SPEs) with tunable network structures are prepared by a facile one-pot reaction of polyhedral oligomeric silsesquioxane and poly(ethylene glycol). These SPEs, with high conductivity and high modulus, exhibit superior resistance to lithium dendrite growth even at high current densities. Measurements of lithium metal batteries with a LiFePO4 cathode show excellent cycling stability and rate capability.
Mixtures of nematic liquid crystals (LCs) were produced by doping small quantities of gold nanoparticles coated with non-chiral hexane-(Au1), dodecane-(Au2) or chiral Naproxenfunctionalized dodecane thiolates (Au3, Au4). Circular dichroism (CD) spectroscopy confirmed the optical activity for both Naproxen-functionalized gold nanoclusters. The small CD measured for Au1 and Au2 as well as the weak CD above 400 nm measured for Au3 and Au4 is attributed to scattering artifacts of dense particles aggregating in solution. For all mixtures, characterization of the nanoparticle doped nematic phase by polarized optical microscopy revealed the formation of uniform stripe textures or patterns separated by areas of homeotropic alignment due to a spatial separation of particle-rich and particle-poor domains. Similar characteristic textures were also observed for mixtures of the chiral nematic phase produced by doping either only the Naproxenfunctionalized thiol 3b or Naproxen and additionally dodecane thiolate-protected gold nanoparticles Au2. On the basis of these findings, observed for the first time for alkane thiolatecapped gold nanoclusters doped into nematic LCs, two different scenarios are suggested. In the first scenario, the optically active gold nanoparticles Au3 and Au4 transfer chirality to the nonchiral nematic LC host. In the second scenario, all functionalized gold nanoclusters Au1-Au4 form topological defects resulting in chain-like particle aggregates, separated by areas of homeotropic alignment due to particles residing at the LC-glass interface.
Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.