Background Testicular germ cell tumours (TGCTs) are the most commonly diagnosed malignancy in young men. Although cisplatin has been shown to be effective to treat TGCT patients, long-term follow-up has shown that TGCT survivors who accepted cisplatin treatment suffered from a greater number of adverse reactions than patients who underwent orchiectomy alone. As metformin has shown an anticancer effect in various cancers, we investigated whether metformin could enhance the effects of cisplatin to treat TGCTs. Methods The anticancer effects of different treatment strategies consisting of metformin and cisplatin in TCam-2 and NTERA-2 cells were assessed in vitro and in vivo. First, we used a colony formation assay, CCK-8 and MTT assays to explore the viability of TGCT cells. Flow cytometry was used to assess the cell cycle and apoptosis of TGCTs. Then, Western blotting was used to detect the protein expression of TGCTs cells after different treatments. In addition, a xenograft model was used to investigate the effects of the different treatments on the proliferation of TGCT cells. Immunohistochemistry assays were performed to analyse the expression of related proteins in the tissues from the xenograft model. Results Metformin inhibited the proliferation of TCam-2 and NTERA-2 cells by arresting them in G1 phase, while metformin did not induce apoptosis in TGCT cells. Compared with cisplatin monotherapy, the CCK-8, MTT assay and colony formation assay showed that sequential treatment with metformin and cisplatin produced enhanced anticancer effects. Further study showed that metformin blocked the cells in G1 phase by inducing phosphorylated YAP1 and reducing the expression of cyclin D1, CDK6, CDK4 and RB, which enhanced the chemosensitivity of cisplatin and activated the expression of cleaved caspase 3 in TGCTs. Conclusions Our study discovers the important role of YAP1 in TGCTs and reports a new treatment strategy that employs the sequential administration of metformin and cisplatin, which can reduce the required cisplatin dose and enhance the sensitivity of TGCT cells to cisplatin. Therefore, this sequential treatment strategy may facilitate the development of basic and clinical research for anticancer therapies to treat TGCTs.
Cisplatin is an efficient chemotherapeutic agent for various solid tumors, but its usage is restricted by nephrotoxicity. A single dose of cisplatin can cause acute kidney injury (AKI), which is characterized by rapid reduction in kidney function. However, the efficacy of current therapies, such as hydration, is limited. It is vital to develop novel therapeutic reagents that have anticancer and renoprotective properties. The objective of this study was to determine whether ammonium tetrathiomolybdate (TM), a copper ion chelator used to treat cancer and disorders of copper metabolism, may offer protection against cisplatin-induced AKI. In this study, we demonstrated that TM treatment had antioxidative effects and mitigated cisplatin-induced AKI both in vivo and in vitro. Mechanically, TM inhibited NRF2 ubiquitination, which activated the NRF2 pathway in HK-2 cells and promoted the expression of target genes. It should be noted that the protective effect conferred by TM against cisplatin was compromised by the knockdown of the NRF2 gene. Furthermore, TM selectively activated the NRF2 pathways in the liver and kidney. The current study provided evidence for additional clinical applications of TM by showing that it activates NRF2 and has a favorable therapeutic impact on cisplatin-induced AKI.
Cisplatin is an efficient chemotherapeutic agent for various solid tumors, but its usage is restricted by nephrotoxicity. A single dose of cisplatin can cause acute kidney injury (AKI), which is characterized by rapid reduction in kidney function. However, the current therapies, such as hydration, are limited. It is vital to develop novel therapeutic reagents that have both anticancer and renoprotective properties. The objective of this study was to determine whether ammonium tetrathiomolybdate (TM), a copper chelator used to treat cancer and disorders of copper metabolism, may offer protection against cisplatin-induced AKI. In this study, we demonstrated that TM treatment had antioxidative effects and mitigated cisplatin-induced AKI both in vivo and in vitro. Mechanically, TM inhibited NRF2 ubiquitination, which activated the NRF2 pathway in HK-2 cells and promoted the expression of target genes. It should be noted that the protective effect conferred by TM against cisplatin was compromised by the knockdown of the NRF2 gene. Furthermore, TM selectively activated the NRF2 pathways in the liver and kidney. The current study provided evidence for additional clinical applications of TM by showing that it activates NRF2 and has a favorable therapeutic impact on cisplatin-induced AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.