As online content continues to grow, so does the spread of hate speech. We identify and examine challenges faced by online automatic approaches for hate speech detection in text. Among these difficulties are subtleties in language, differing definitions on what constitutes hate speech, and limitations of data availability for training and testing of these systems. Furthermore, many recent approaches suffer from an interpretability problem—that is, it can be difficult to understand why the systems make the decisions that they do. We propose a multi-view SVM approach that achieves near state-of-the-art performance, while being simpler and producing more easily interpretable decisions than neural methods. We also discuss both technical and practical challenges that remain for this task.
HighlightsWe propose five spraying parameters according to the characteristics of pig carcasses in the spray-chilling process.A prediction model for pig carcass weight loss, based on a genetic algorithm back-propagation neural network, is proposed to reveal the relationship between weight loss and spraying parameters.To study the effects of various spraying parameters on weight loss, an automatic spray-chilling device was designed, which can modify up to five spraying parameters.Abstract. Because the weight loss of a pig carcass in the spray-chilling process is easily affected by the spraying frequency and duration, a prediction model for weight loss based on a genetic algorithm (GA) back-propagation (BP) neural network is proposed in this article. With three-way crossbred pig carcasses selected as the test materials, the duration and time interval of high-frequency spraying, the duration and time interval of low-frequency spraying, and the duration of a single spray were selected as inputs to the network model. The weight and threshold of the network were then optimized by the GA. The prediction model for pig carcass weight loss established by the GA BP neural network yielded a correlation coefficient of R = 0.99747 between the network output value of the test samples and the target value. Weight loss prediction by the model is feasible and allows better expression of the nonlinear relationship between weight loss and the main controlling factors. The results can be a reference for chilled meat production. Keywords: BP neural network, Genetic algorithm, Pig carcass, Predictive model, Weight loss
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.