Background Oxidative stress plays an important role in the progression of various types of tumors. However, its role in esophageal squamous cell carcinoma (ESCC) has seldom been explored. This study aimed to discover prognostic markers associated with oxidative stress in ESCC to improve the prediction of prognosis and help in the selection of effective immunotherapy for patients. Results A consensus cluster was constructed using 14 prognostic differentially expressed oxidative stress-related genes (DEOSGs) that were remarkably related to the prognosis of patients with ESCC. The infiltration levels of neutrophils, plasma cells, and activated mast cells, along with immune score, stromal score, and estimated score, were higher in cluster 1 than in cluster 2. A prognostic signature based on 10 prognostic DEOSGs was devised that could evaluate the prognosis of patients with ESCC. Calculated risk score proved to be an independent clinical prognostic factor in the training, testing, and entire sets. P53 signaling pathway was highly enriched in the high-risk group. The calculated risk score was positively related to the infiltration levels of resting mast cells, memory B cells, and activated natural killer (NK) cells and negatively associated with the infiltration levels of M1 and M2 macrophages. The relationship between clinical characteristics and risk score has not been certified. The half-maximal inhibitory concentration (IC50) values for sorafenib and gefitinib were lower for patients in the low-risk group. Conclusion Our prognostic signature based on 10 prognostic DEOSGs could predict the disease outcomes of patients with ESCC and had strong clinical value. Our study improves the understanding of oxidative stress in tumor immune microenvironment (TIME) and provides insights for developing improved and efficient immunotherapy strategies.
Oesophageal squamous cell carcinoma (ESCC) remains a clinically challenging disease with high morbidity rates and poor prognosis. ESCC is also the most common pathological type of oesophageal cancer (EC) in China. Ras-related genes are one of the most frequently mutated gene families in cancer and regulate tumour development and progression. Given this, we investigated the Ras-related gene expression profiles and their values in ESCC prognosis, using data from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. We found that we could identify three distinct oesophageal cancer clusters based on their unique expression profile for 11 differentially expressed Ras-related genes with each of these demonstrating some prognostic value when, evaluated using univariate Cox analysis. We then used multivariate Cox analysis to identify relevant independent prognostic indicators and used these to build a new prognostic prediction model for oesophageal cancer patients using these three Ras-related genes. These evaluations produced an area under the curve (AUC) of 0.932. We found that our Ras-related signatures could also act as independent factors in ESCC prognosis and that patients with low Ras scores showed a higher overall expression levels of various immune checkpoint genes, including TNFSF4, TNFRSF8, TNFRSF9, NRP1, CD28, CD70, CD200, CD276, METTL16, METTL14, ZC3H13, YTHDF3, VIRMA, FTO, and RBM15, as well as a higher CSMD3, FLG, DNAH5, MUC4, PLCO, EYS, and ZNF804B mutation rates, and better sensitivity to drugs such as erlotinib, paclitaxel, and gefitinib. In conclusion, we were able to use the unique expression profiles of several Ras-related genes to produce a novel disease signature which might facilitate improved prognosis in ESCC, providing new insight into both diagnosis and treatment in these cancers.
Objective Examining the role of immune‐related genes (IRGs) in “driver gene negative” lung adenocarcinoma (LUAD) may provide new ideas for the treatment and study for this LUAD subgroup. We aimed to find the hub immune‐related gene pairs can stratify the risk of “driver‐gene‐negative” LUAD. Materials and Methods IRGs were identified according to ImmPort database based on RNA sequencing results of tumors and normal tissues from 46 patients with “driver gene negative” LUAD at The First Affiliated Hospital of Sun Yat‐sen University and cyclically singly paired as immune‐related gene pairs (IRGPs). Multivariate Cox analysis was used to construct an immune risk model and a prognostic nomogram combining was also been developed. Immune microenvironment landscape described by CIBERSORT and drug sensitivity calculated by pRRophetic algorithm were used to explore possible treatment improvements. Results A novel immune risk model with 5‐IRGPs (CD1A|CXCL135, CD1A|S100A7L2, IFNA7|CMTM2, IFNA7|CSF3, CAMP|TFR2) can accurately distinguish patients in the high‐ and low‐risk groups. Risk score act as an independent prognostic factor and is related to clinical stage. There are significant differences in tumor immune microenvironment and PD‐1/PD‐L1/CTLA‐4 expression between groups. The low‐risk patient may benefit more from the commonly used chemotherapy regimens such as gemcitabine and paclitaxel. Conclusion This study constructed 5‐IRGPs as a reliable prognostic tool and may represent genes pairs that are potential rationale for choice of treatment for “driver gene negative” LUAD.
Background General transcription factor IIi (GTF2I) mutations are very common in thymic epithelial tumors (TETs) and are related to a more favorable prognosis in TET patients. However, limited research has been conducted on the role of GTF2I in the tumor immune microenvironment (TIME). Further, long non-coding RNAs (lncRNAs) have been associated with the survival of patients with TETs. Therefore, this study aimed to explore the relationship between GTF2I mutations and TIME and build a new potential signature for predicting tumor recurrence in the TETs. Research data was downloaded from The Cancer Genome Atlas database and the CIBERSORT algorithm was used to evaluate TIME differences between GTF2I mutant and wild-type TETs. Relevant differentially expressed lncRNAs based on differentially expressed immune-related genes were identified to establish lncRNA pairs. We constructed a signature using univariate and multivariate Cox regression analyses. Results GTF2I is the most commonly mutated gene in TETs, and is associated with an increased number of early-stage pathological types, as well as no history of myasthenia gravis or radiotherapy treatment. In the GTF2I wild-type group, immune score and immune cell infiltrations with M2 macrophages, activated mast cells, neutrophils, plasma, T helper follicular cells, and activated memory CD4 T cells were higher than the GTF2I mutant group. A risk model was built using five lncRNA pairs, and the 1-, 3-, and 5-year area under the curves were 0.782, 0.873, and 0.895, respectively. A higher risk score was related to more advanced histologic type. Conclusion We can define the GTF2I mutant-type TET as an immune stable type and the GTF2I wild-type as an immune stressed type. A signature based on lncRNA pairs was also constructed to effectively predict tumor recurrence.
Background To study the role of computed tomography (CT)-derived radiomics features and clinical characteristics on the prognosis of “driver gene-negative” lung adenocarcinoma (LUAD) and to explore the potential molecular biological which may be helpful for patients’ individual postoperative care. Methods A total of 180 patients with stage I-III “driver gene-negative” LUAD in the First Affiliated Hospital of Sun Yat-Sen University from September 2003 to June 2015 were retrospectively collected. The Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model was used to screen radiomics features and calculated the Rad-score. The prediction performance of the nomogram model based on radiomics features and clinical characteristics was validated and then assessed with respect to calibration. Gene set enrichment analysis (GSEA) was used to explore the relevant biological pathways. Results The radiomics and the clinicopathological characteristics were combined to construct a nomogram resulted in better performance for the estimation of OS (C-index: 0.815; 95% confidence interval [CI]: 0.756–0.874) than the clinicopathological nomogram (C-index: 0.765; 95% CI: 0.692–0.837). Decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics nomogram outperformed the traditional staging system and the clinicopathological nomogram. The clinical prognostic risk score of each patient was calculated based on the radiomics nomogram and divided by X-tile into high-risk (> 65.28) and low-risk (≤ 65.28) groups. GSEA results showed that the low-risk score group was directly related to amino acid metabolism, and the high-risk score group was related to immune and metabolism pathways. Conclusions The radiomics nomogram was promising to predict the prognosis of patients with “driver gene-negative” LUAD. The metabolism and immune-related pathways may provide new treatment orientation for this genetically unique subset of patients, which may serve as a potential tool to guide individual postoperative care for those patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.