With the development of satellite technology, up to date imaging mode of synthetic aperture radar (SAR) satellite can provide higher resolution SAR imageries, which benefits ship detection and instance segmentation. Meanwhile, object detectors based on convolutional neural network (CNN) show high performance on SAR ship detection even without land-ocean segmentation; but with respective shortcomings, such as the relatively small size of SAR images for ship detection, limited SAR training samples, and inappropriate annotations, in existing SAR ship datasets, related research is hampered. To promote the development of CNN based ship detection and instance segmentation, we have constructed a High-Resolution SAR Images Dataset (HRSID). In addition to object detection, instance segmentation can also be implemented on HRSID. As for dataset construction, under the overlapped ratio of 25%, 136 panoramic SAR imageries with ranging resolution from 1m to 5m are cropped to 800 x 800 pixels SAR images. To reduce wrong annotation and missing annotation, optical remote sensing imageries are applied to reduce the interferes from harbor constructions. There are 5604 cropped SAR images and 16951 ships in HRSID, and we have divided HRSID into a training set (65% SAR images) and test set (35% SAR images) with the format of Microsoft Common Objects in Context (MS COCO). 8 state-of-the-art detectors are experimented on HRSID to build the baseline; MS COCO evaluation metrics are applicated for comprehensive evaluation. Experimental results reveal that ship detection and instance segmentation can be well implemented on HRSID.
SAR Ship Detection Dataset (SSDD) is the first open dataset that is widely used to research state-of-the-art technology of ship detection from synthetic aperture radar (SAR) imagery based on deep learning (DL). According to our investigation, up to 46.59% of the total 161 public reports confidently select SSDD to study DL-based SAR ship detection. Undoubtedly, this situation reveals the popularity and great influence of SSDD in the SAR remote sensing community. Nevertheless, the coarse annotations and ambiguous standards of use of its initial version both hinder fair methodological comparisons and effective academic exchanges. Additionally, its single-function horizontal-vertical rectangle bounding box (BBox) labels can no longer satisfy the current research needs of the rotatable bounding box (RBox) task and the pixel-level polygon segmentation task. Therefore, to address the above two dilemmas, in this review, advocated by the publisher of SSDD, we will make an official release of SSDD based on its initial version. SSDD’s official release version will cover three types: (1) a bounding box SSDD (BBox-SSDD), (2) a rotatable bounding box SSDD (RBox-SSDD), and (3) a polygon segmentation SSDD (PSeg-SSDD). We relabel ships in SSDD more carefully and finely, and then explicitly formulate some strict using standards, e.g., (1) the training-test division determination, (2) the inshore-offshore protocol, (3) the ship-size reasonable definition, (4) the determination of the densely distributed small ship samples, and (5) the determination of the densely parallel berthing at ports ship samples. These using standards are all formulated objectively based on the using differences of existing 75 (161 × 46.59%) public reports. They will be beneficial for fair method comparison and effective academic exchanges in the future. Most notably, we conduct a comprehensive data analysis on BBox-SSDD, RBox-SSDD, and PSeg-SSDD. Our analysis results can provide some valuable suggestions for possible future scholars to further elaborately design DL-based SAR ship detectors with higher accuracy and stronger robustness when using SSDD.
Ship detection in high-resolution synthetic aperture radar (SAR) imagery is a challenging problem in the case of complex environments, especially inshore and offshore scenes. Nowadays, the existing methods of SAR ship detection mainly use low-resolution representations obtained by classification networks or recover high-resolution representations from low-resolution representations in SAR images. As the representation learning is characterized by low resolution and the huge loss of resolution makes it difficult to obtain accurate prediction results in spatial accuracy; therefore, these networks are not suitable to ship detection of region-level. In this paper, a novel ship detection method based on a high-resolution ship detection network (HR-SDNet) for high-resolution SAR imagery is proposed. The HR-SDNet adopts a novel high-resolution feature pyramid network (HRFPN) to take full advantage of the feature maps of high-resolution and low-resolution convolutions for SAR image ship detection. In this scheme, the HRFPN connects high-to-low resolution subnetworks in parallel and can maintain high resolution. Next, the Soft Non-Maximum Suppression (Soft-NMS) is used to improve the performance of the NMS, thereby improving the detection performance of the dense ships. Then, we introduce the Microsoft Common Objects in Context (COCO) evaluation metrics, which provides not only the higher quality evaluation metrics average precision (AP) for more accurate bounding box regression, but also the evaluation metrics for small, medium and large targets, so as to precisely evaluate the detection performance of our method. Finally, the experimental results on the SAR ship detection dataset (SSDD) and TerraSAR-X high-resolution images reveal that (1) our approach based on the HRFPN has superior detection performance for both inshore and offshore scenes of the high-resolution SAR imagery, which achieves nearly 4.3% performance gains compared to feature pyramid network (FPN) in inshore scenes, thus proving its effectiveness; (2) compared with the existing algorithms, our approach is more accurate and robust for ship detection of high-resolution SAR imagery, especially inshore and offshore scenes; (3) with the Soft-NMS algorithm, our network performs better, which achieves nearly 1% performance gains in terms of AP; (4) the COCO evaluation metrics are effective for SAR image ship detection; (5) the displayed thresholds within a certain range have a significant impact on the robustness of ship detectors.
Ship detection in synthetic aperture radar (SAR) images is becoming a research hotspot. In recent years, as the rise of artificial intelligence, deep learning has almost dominated SAR ship detection community for its higher accuracy, faster speed, less human intervention, etc. However, today, there is still a lack of a reliable deep learning SAR ship detection dataset that can meet the practical migration application of ship detection in large-scene space-borne SAR images. Thus, to solve this problem, this paper releases a Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) from Sentinel-1, for small ship detection under large-scale backgrounds. LS-SSDD-v1.0 contains 15 large-scale SAR images whose ground truths are correctly labeled by SAR experts by drawing support from the Automatic Identification System (AIS) and Google Earth. To facilitate network training, the large-scale images are directly cut into 9000 sub-images without bells and whistles, providing convenience for subsequent detection result presentation in large-scale SAR images. Notably, LS-SSDD-v1.0 has five advantages: (1) large-scale backgrounds, (2) small ship detection, (3) abundant pure backgrounds, (4) fully automatic detection flow, and (5) numerous and standardized research baselines. Last but not least, combined with the advantage of abundant pure backgrounds, we also propose a Pure Background Hybrid Training mechanism (PBHT-mechanism) to suppress false alarms of land in large-scale SAR images. Experimental results of ablation study can verify the effectiveness of the PBHT-mechanism. LS-SSDD-v1.0 can inspire related scholars to make extensive research into SAR ship detection methods with engineering application value, which is conducive to the progress of SAR intelligent interpretation technology. LS-SSDD-v1.0 is available at https://github.com/TianwenZhang0825/LS-SSDD-v1.0-OPEN.
Binary neural networks (BNN) have been studied extensively since they run dramatically faster at lower memory and power consumption than floating-point networks, thanks to the efficiency of bit operations. However, contemporary BNNs whose weights and activations are both single bits suffer from severe accuracy degradation. To understand why, we investigate the representation ability, speed and bias/variance of BNNs through extensive experiments. We conclude that the error of BNNs are predominantly caused by the intrinsic instability (training time) and non-robustness (train & test time). Inspired by this investigation, we propose the Binary Ensemble Neural Network (BENN) which leverages ensemble methods to improve the performance of BNNs with limited efficiency cost. While ensemble techniques have been broadly believed to be only marginally helpful for strong classifiers such as deep neural networks, our analysis and experiments show that they are naturally a perfect fit to boost BNNs. We find that our BENN, which is faster and more robust than state-of-the-art binary networks, can even surpass the accuracy of the full-precision floating number network with the same architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.