A retroviral vector system with high transfection efficiency into T lymphocytes and carrying a rapid screening label has been constructed, which establishes the foundation for basic and clinical studies on T lymphocytes.
In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.
Objective. To test the effects of a novel monoclonal antibody (mAb) against human osteopontin (OPN) in the prevention and treatment of collagen-induced arthritis (CIA) and to elucidate the underlying mechanisms of these effects.Methods. DBA/1J mice immunized with type II collagen to induce CIA were monitored to assess the effects of anti-OPN mAb on the clinical severity of the disease, and pathologic changes in the joints were Conclusion. Because of its ability to effectively promote apoptosis of activated T cells, mAb 23C3 may be a novel therapeutic agent for the treatment of RA.
SUMMARYExisting studies on transportation mode detection from global positioning system (GPS) trajectories mainly adopt handcrafted features. These features require researchers with a professional background and do not always work well because of the complexity of traffic behavior. To address these issues, we propose a model using a sparse autoencoder to extract point-level deep features from point-level handcrafted features. A convolution neural network then aggregates the point-level deep features and generates a trajectory-level deep feature. A deep neural network incorporates the trajectory-level handcrafted features and the trajectory-level deep feature for detecting the users' transportation modes. Experiments conducted on Microsoft's GeoLife data show that our model can automatically extract the effective features and improve the accuracy of transportation mode detection. Compared with the model using only handcrafted features and shallow classifiers, the proposed model increases the maximum accuracy by 6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.