We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.
Long terminal repeat retrotransposons (LTR elements) are ubiquitous eukaryotic transposable elements. They play important roles in the evolution of genes and genomes. Ever-growing amount of genomic sequences of many organisms present a great challenge to fast identifying them. That is the first and indispensable step to study their structure, distribution, functions and other biological impacts. However, until today, tools for efficient LTR retrotransposon discovery are very limited. Thus, we developed LTR_FINDER web server. Given DNA sequences, it predicts locations and structure of full-length LTR retrotransposons accurately by considering common structural features. LTR_FINDER is a system capable of scanning large-scale sequences rapidly and the first web server for ab initio LTR retrotransposon finding. We illustrate its usage and performance on the genome of Saccharomyces cerevisiae. The web server is freely accessible at http://tlife.fudan.edu.cn/ltr_finder/.
The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.