A three-dimensional (3-D) finite element (FE) model was developed to investigate the dynamic responses of thin, flexible pavement under impulsive loading similar to a falling weight deflectometer test. The FE model simulated the hot-mix asphalt (HMA) surface layer as a linear viscoelastic material and considered the cross-anisotropic stress dependent modulus for the unbound base layer. Implicit dynamic analysis was used to consider the effect of inertia on pavement structural responses. Using two thinpavement structures of different HMA layer thicknesses, 76 and 127 mm, the study analyzed the effects of cross-anisotropic stress-dependent aggregate base modulus and dynamic analysis on pavement responses, including surface deflection, tensile strain at the bottom of the HMA layer, deviator stress in the base layer, and compressive strain on top of the subgrade. Results showed that use of the cross-anisotropic stress-dependent modulus for the unbound base layer resulted in greater predicted pavement responses and, hence, less estimated pavement life for rutting and fatigue cracking. It was found that as the thickness of HMA surface layer or the ratio of horizontal modulus to vertical modulus decreases, the effects of stress dependency and cross anisotropy become more significant. Analysis-predicted surface deflections were compared to field-measured values and they were in agreement when the stress dependency and cross anisotropy of the base layer and subgrade were considered.The typical pavement structure of a low-or medium-volume road consists of a relatively thin hot-mix asphalt (HMA) surface layer and an unbound base layer on subgrade. The unbound base layer distributes the wheel load caused by traffic and reduces shear stresses on subgrade. The conventional pavement design method treats the granular base layer as linear-elastic material with constant Poisson's ratio. However, the nonlinear stress-dependent behavior of an unbound base layer has been well documented (1). Furthermore, several research studies have concluded that unbound base layers exhibit cross-anisotropic properties because of the orientation of aggregate, which is controlled by its shape, stress-induced compaction, and vertical traffic-loading conditions. Hence, the horizontal resilient modulus of a base layer may be a small fraction of the vertical resilient modulus (2-4).
A three-dimensional (3-D) finite element (FE) model was developed to predict pavement responses to vehicular loading. The model incorporates measured tire-pavement contact stresses, continuous moving wheel loading, and hot-mix asphalt (HMA) viscoelastic characteristics. The model was fine-tuned using implicit-dynamic analysis and validated using pavement response from accelerated loading. Two tire configurations (dual-tire assembly and wide-base 455 tire) and three full-depth flexible pavement designs (HMA 152 mm, 254 mm, and 420 mm) were used in both FE modeling and accelerated loading tests. The predicted and calculated strain responses at the bottom of HMA were in agreement. Most important, the study shows that vertical shear strain in the upper 76 to 100 mm of the pavement surface is critical for thick pavement and is influenced by the 3-D tire-pavement contact stresses under each tire rib. However, the tensile strain at the bottom of HMA is affected mainly by the total wheel load. The vertical shear strain is responsible for near-surface fatigue cracking as well as HMA primary rutting. Top-down cracking could result from the local vertical shear strain in the upper 25 mm of the HMA where the effect of tire-pavement tangential stresses are the highest. In addition, the study concluded that wide-base tires cause higher longitudinal tensile strain at the bottom of HMA and compressive strain at the top of subgrade, where those responses are highly affected by the total wheel load. However, wide-base tires were found to cause less vertical shear strains near the surface than dual-tire assembly loading regardless of HMA thicknesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.