An evaporating meniscus in a microchannel is investigated through an augmented Young-Laplace model and the kinetic theory-based expression for mass transport across a liquid-vapor interface. The complete expression for mass transport is employed without any approximations and boundary conditions for the film profile are developed. The thin-film and the intrinsic-meniscus regions are distinguished based on the disjoining pressure variation along the meniscus. While heat transfer in the thin-film region is found to be relatively insensitive to channels larger than a few micrometers in radius, that in the intrinsic meniscus is quite sensitive to channel size. The role of evaporation suppression due to capillary pressure in both regions is discussed. Compared to the relatively small contribution to overall heat transfer from the thin-film region, the micro region (defined here as extending from the non-evaporating region to a location where the film is 1 m thick) is found to account for more than 50% of the total heat transfer.
We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, N_{TB}, and the oblique helicoidal cholesteric, Ch_{OH}, which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N-N_{TB} and N-to-isotropic (I) transitions. The splay constant K_{11} is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K_{33} and twist K_{22} constants are measured by DLS. K_{33}, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N-N_{TB} pretransitional regions. The measured ratio K_{11}/K_{22} is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N-N_{TB} transition.
the duality consolidation, the idea of controlling light and how it interacts with matter has always been an exciting topic. Visible light, as we perceive it, is a small portion of the electromagnetic spectrum composed of mutually perpendicular oscillating electric and magnetic fields that propagate through space and presents wave-like and particle-like behavior. Since the elements comprising matter possess dynamic electron clouds, the electromagnetic nature of light prompts different responses when it interacts with different materials, depending on its intensity, frequency, the arrangement of molecules, and so on. Whenever light interacts with matter, it might be absorbed, re-emitted, scattered, or transmitted. Although these effects are well known, the combination of them with new, innovative materials pushes optics forward. In fact, advances in optics have often occurred through the development of materials with improved optical properties, thus creating remarkable applications that tremendously influence our daily lives. These exciting applications include image processing and recording, lasing, data storage, display devices, detector systems, propulsion systems, and optical tweezers, which have enabled remote micromanipulation of colloidal particles and promising applications in various biomedical and biological applications. [1][2][3] There is, however, one component that stands out: the diffraction grating. It is generally regarded as one of the most important devices in the development of several fields of science. [4] Such importance comes from the fact that a diffraction grating is a device with a periodic structure capable of changing the propagation and splitting the spectrum The ability to control light direction with tailored precision via facile means is long-desired in science and industry. With the advances in optics, a periodic structure called diffraction grating gains prominence and renders a more flexible control over light propagation when compared to prisms. Today, diffraction gratings are common components in wavelength division multiplexing devices, monochromators, lasers, spectrometers, media storage, beam steering, and many other applications. Next-generation optical devices, however, demand nonmechanical, full and remote control, besides generating higher than 1D diffraction patterns with as few optical elements as possible. Liquid crystals (LCs) are great candidates for light control since they can form various patterns under different stimuli, including periodic structures capable of behaving as diffraction gratings. The characteristics of such gratings depend on several physical properties of the LCs such as film thickness, periodicity, and molecular orientation, all resulting from the internal constraints of the sample, and all of these are easily controllable. In this review, the authors summarize the research and development on stimuli-controllable diffraction gratings and beam steering using LCs as the active optical materials. Dynamic gratings fabricated by applying external f...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.