Respiration rate, heart rate, and heart rate variability (HRV) are some health metrics that are easily measured by consumer devices, which can potentially provide early signs of illness. Furthermore, mobile applications that accompany wearable devices can be used to collect relevant self-reported symptoms and demographic data. This makes consumer devices a valuable tool in the fight against the COVID-19 pandemic. Data on 2745 subjects diagnosed with COVID-19 (active infection, PCR test) were collected from May 21 to September 11, 2020, consisting of PCR positive tests conducted between February 16 and September 9. Considering male (female) participants, 11.9% (11.2%) of the participants were asymptomatic, 48.3% (47.8%) recovered at home by themselves, 29.7% (33.7%) recovered at home with the help of someone else, 9.3% (6.6%) required hospitalization without ventilation, and 0.5% (0.4%) required ventilation. There were a total of 21 symptoms reported, and the prevalence of symptoms varies by sex. Fever was present in 59.4% of male subjects and in 52% of female subjects. Based on self-reported symptoms alone, we obtained an AUC of 0.82 ± 0.017 for the prediction of the need for hospitalization. Based on physiological signs, we obtained an AUC of 0.77 ± 0.018 for the prediction of illness on a specific day. Respiration rate and heart rate are typically elevated by illness, while HRV is decreased. Measuring these metrics, taken in conjunction with molecular-based diagnostics, may lead to better early detection and monitoring of COVID-19.
Respiration rate, heart rate, and heart rate variability are some health metrics that are easily measured by consumer devices and which can potentially provide early signs of illness. Furthermore, mobile applications which accompany wearable devices can be used to collect relevant self-reported symptoms and demographic data. This makes consumer devices a valuable tool in the fight against the COVID-19 pandemic. We considered two approaches to assessing COVID-19 - a symptom-based approach, and a physiological signs based technique. Firstly, we trained a Logistic Regression classifier to predict the need for hospitalization of COVID-19 patients given the symptoms experienced, age, sex, and BMI. Secondly, we trained a neural network classifier to predict whether a person is sick on any specific day given respiration rate, heart rate, and heart rate variability data for that day and and for the four preceding days. Data on 1,181 subjects diagnosed with COVID-19 (active infection, PCR test) were collected from May 21 - July 14, 2020. 11.0% of COVID-19 subjects were asymptomatic, 47.2% of subjects recovered at home by themselves, 33.2% recovered at home with the help of someone else, 8.16% of subjects required hospitalization without ventilation support, and 0.448% required ventilation. Fever was present in 54.8% of subjects. Based on self-reported symptoms alone, we obtained an AUC of 0.77 +/- 0.05 for the prediction of the need for hospitalization. Based on physiological signs, we obtained an AUC of 0.77 +/- 0.03 for the prediction of illness on a specific day with 4 previous days of history. Respiration rate and heart rate are typically elevated by illness, while heart rate variability is decreased. Measuring these metrics can help in early diagnosis, and in monitoring the progress of the disease.
We show that heart rate enabled wearable devices can be used to measure respiratory rate. Respiration modulates the heart rate creating excess power in the heart rate variability at a frequency equal to the respiratory rate, a phenomenon known as respiratory sinus arrhythmia. We isolate this component from the power spectral density of the heart beat interval time series, and show that the respiratory rate thus estimated is in good agreement with a validation dataset acquired from sleep studies (root mean squared error = 0.648 min−1, mean absolute error = 0.46 min−1, mean absolute percentage error = 3%). We use this respiratory rate algorithm to illuminate two potential applications (a) understanding the distribution of nocturnal respiratory rate as a function of age and sex, and (b) examining changes in longitudinal nocturnal respiratory rate due to a respiratory infection such as COVID-19. 90% of respiratory rate values for healthy adults fall within the range 11.8−19.2 min−1 with a mean value of 15.4 min−1. Respiratory rate is shown to increase with nocturnal heart rate. It also varies with BMI, reaching a minimum at 25 kg/m2, and increasing for lower and higher BMI. The respiratory rate decreases slightly with age and is higher in females compared to males for age <50 years, with no difference between females and males thereafter. The 90% range for the coefficient of variation in a 14 day period for females (males) varies from 2.3–9.2% (2.3−9.5%) for ages 20−24 yr, to 2.5−16.8% (2.7−21.7%) for ages 65−69 yr. We show that respiratory rate is often elevated in subjects diagnosed with COVID-19. In a 7 day window from D−1 to D+5 (where D0 is the date when symptoms first present, for symptomatic individuals, and the test date for asymptomatic cases), we find that 36.4% (23.7%) of symptomatic (asymptomatic) individuals had at least one measurement of respiratory rate 3 min−1 higher than the regular rate.
The COVID-19 disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become one of the worst global pandemics of the century. Wearable devices are well suited for continuously measuring heart rate. Here we show that the Resting Heart Rate is modified for several weeks following a COVID-19 infection. The Resting Heart Rate shows 3 phases: 1) elevated during symptom onset, with average peak increases relative to the baseline of 1.8% (3.4%) for females (males), 2) decrease thereafter, reaching a minimum on average ≈13 days after symptom onset, and 3) subsequent increase, reaching a second peak on average ≈28 days from symptom onset, before falling back to the baseline ≈112 days from symptom onset. All estimates vary with disease severity1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.